Metric Spaces Lecture 2

The definition of continuity (as stated in Lecture 1 for functions from R? to R?)
makes sense for functions from any metric space (X, d) to any other metric space (Y, d’):

A function f: X — Y is continuous at the point a € X if for every real number
€ > 0 there exists a real number § > 0 such that the following condition holds:
for all x € X, if d(x,a) < ¢ then d'(f(z), f(a)) < e.

Using the concept of “open ball”, this can be rephrased as follows:

A function f: X — Y is continuous at a € X if and only if for every open ball B
with centre at f(a) there is an open ball C' with centre a such that f(C) C B.

Note that the condition f(C) C B is equivalent to C C f~1(B). (This is easy to prove:
it follows immediately from the definitions of “image” and “preimage”.)
The following proposition generalizes the above statement slightly.

Proposition. Let (X,d), (Y,d") be metric spaces and f: X — Y a function, and let
a € X. Then f is continuous at a if and only if for every open subset U of Y with
a € f~Y(U) there is an open ball C with centre a such that C C f=Y(U).

Proof. Suppose first that f satisfies the stated condition; we shall show that f is contin-
uous at a.

Let € > 0. Then U = B(f(a),e) is an open subset of Y, and a € f~1(U) (since
f(a) € U). So by the given condition there exists an open ball C' centred at a such that
C C f~YU). Let § be the radius of C (so that C' = B(a,d)). Now if x is an arbitrary
element of X satisfying d(z,a) < ¢, then

reCC ffl(U),

whence f(z) € U = B(f(a),e), which means that d'(f(z), f(a)) < e.

Thus we have have shown that for every € > 0 there exists 6 > 0 such that, for all
x € X, if d(z,a) < § then d(f(z), f(a)) < e. That is, we have shown that f is continuous
at a.

Conversely, suppose that f is continuous at a, and let U be an open subset of Y such
that a € f~1(U). Since U is open and f(a) € U there is an ¢ > 0 such that B(f(a),¢) C U.
Since f is continuous at a there exists § > 0 such that, for all z € X, if d(x,a) < ¢ then
d'(f(z), f(a)) < e. Now put C = B(a,0d), an open ball centred at a. For all x € C we
have d(z,a) < §, which gives d'(f(z), f(a)) < €, and hence f(z) € B(f(a),e) C U. So
x € f~YU) whenever z € C; in other words, C C f~!(U). Thus we have shown that
for every open set U containing f(a) there is an open ball centred at a and contained in
f~Y(U), as required. O

In view of the definition of the interior of a set, we can restate the above result as
follows.

Corollary. The function f: X — 'Y is continuous at a if and only if, for all open subsets
UofY,ifae f~Y(U) then a € Int(f~1(U)).
This enables us to now give a concise characterization of continuous functions.

Corollary. If (X,d) and (Y,d") are metric spaces then a function f: X — Y is continuous
if and only if f~1(U) is an open subset of X whenever U is an open subset of Y.

Proof. To say that f is continuous is to say that it is continuous at all points a¢ € X.
By the previous corollary, this holds if and only if for all open U C Y and all a € X, if
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a € f~1(U) then a € Int(f~1(U)). That is, for every open U C Y, all points of f~1(U)
are interior points. But to say that all points of f~1(U) are interior points is to say that
f7Y(U) is open. O

Some inequalities

Suppose that 0 < § < 1. If (x¢,y0) and (z1,%1) are points in R? then the point (z,y)
defined by
= 0x0+ (1 —-0)x;

y=0yo+(1—-0)

lies on the line segment joining (g, yo) and (x1,y1). Now the graph of y = Inz is concave
downwards; so if (zg,y0) and (x1,y1) are on this graph then (x,y) will be below it; that
is, y < Inz. In other words, if a, b > 0 and we define

To=a r1 =20
Yo =1na and y1 =1nb

so that
x=~0a+ (1—-0)b

y=0(na)+ (1 —6)(Ind)

then it follows that
O(lna) + (1 —0)(Inb) < In(fa + (1 — 0)b).

Taking exponentials of both sides, using the fact that e® is monotone increasing, it follows
that
e@(lna)+(1—9)(lnb) < fa + (1 _ 9)[)

But e/ @)+(1=0)(nb) — o0(Ina),(1-0)(Inb) — ¢0p1=0. g5 we have shown that
a’b' = < fa + (1 - 6)b. (%)

for all a, b > 0. The same in fact holds for a, b > 0, since if either a or b is zero then the
left hand side is zero, while the right hand side remains nonnegative.

Holder’s Inequality. Let p > 1 and put ¢ = p/(p — 1) (so that ¢ > 1 and % + % =1).
Let ay, by be arbitrary complex numbers, where k runs from 1 to n. Then

- - 1/p /- 1/q
> Jarbi| < (Z !ak!p> <Z |bl~:’q> :
k=1 k=1 k=1

Proof. Let ¢, = |ag|? and dj, = |bg|?, and put C = > cx and D = >, dj. Put
6 = 1/p, so that 1 — 0 = 1/q, and apply (*) with ¢;/C in place of a and dj/D in place
of b. We obtain

(cr/C) P (dy/ D) < (1/p)(c/C) + (1/4)(di/D).
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Summing from k& = 1 to n gives

L 1/Pd1/q

ch/le/q < CZCH*de
1 1
p q

Hence 22:1 c,lg/pd,lc/q < CY/rDV4; that is,

n

an laxby| < (Z |ak|p) 1/p (i \bqu) 1/q

k=1 k=1 k=1
as required. O

The special case of Holder’s Inequality in which p = ¢ = 2 is known as Cauchy’s
Inequality.
Minkowski’s Inequality. Let p > 1, and let ag, by € C be arbitrary. Then

(s n) " < ()" (o)
k=1 k=1 k=1

Proof.  Since |a+b| < |a|+ |b] for all complex numbers a and b, it is clear that the result
holds for p = 1. So we assume that p > 1. Put ¢ =p/(p — 1).
For all £ from 1 to n we have

(ak + bi)P = ax(ar + bk)p_l + by (ar + bk)p_l

and so using standard properties of the modulus function for complex numbers (namely
|ab| = |a||b| and |a + b| < |a| + |b| for all a, b € C, and |a’| = |a|* for all @ € C and t € R)
we deduce that

lag, + bi|” < Jak|(Jak + be)P~" + |be|(Jax + be|)P

for all k. Summing from k = 1 to n, and then applying Holder’s Inequality to each of the
sums on the right hand side gives

Z|ak+bk]p<2\ak\ |ay, + bi|)P~ 1+Z\bk| lay, + bi| )P~

k=1 k=1

g(;mﬂp) p(2(|ak+bk|)(p_l)q)l/q (Z|bk|p) (Zl(|ak+bk|)(p 1)q>

k=1

(B (B (B )

1/q

where in the last line we have used (p — 1)g = p. Dividing through by the second factor
on the right hand side gives

- 1-(1/q) - 1/p - 1/p
(Ml + o) < (X lael?) ™+ (S lol)
k=1 k=1 k=1
which is the required result, since 1 — (1/q) = 1/p. O
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