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1. Determine which of the following subsets A are compact subsets in the ap-
propriate Rn.

(i) A = [0, 2)

(ii) A = Q ∩ [0, 1]

(iii) A = { (x1, x2) ∈ R2 | x2 = 0 }
(iv) A = { (x1, x2) ∈ R2 | x2

1 + x2
2 ≤ 4 } ∪ {(1, 2)}.

Solution.

(i) Compact sets are closed (in any Hausdorff space). Since [0, 2) is not
closed it is not compact. (The open covering [0, 2) ⊆

⋃∞
n=1(−1, 2 − 1

n )
has no finite subcovering.)

(ii) This set is not closed, and so it is not compact. (And, for example
A ⊆

⋃∞
n=1((−1, (n−1)

√
2

2n ) ∪ ( (n+1)
√

2
2n , 2)) is an open covering for which

there is no finite subcovering.)

(iii) To be compact a set must be bounded; this set is not.

(iv) This set is closed and bounded; so it is compact (by Heine-Borel).

2. Let A and B be compact subsets of a topological space X. Show that A ∩B
and A ∪B are also compact.

Solution.

The question is wrong as stated: to prove that A ∩ B is compact an extra
assumption is needed. However, A ∪ B is necessarily compact. For suppose
that (Vi)i∈I is a family of open sets with A∪B ⊆

⋃
i∈I Vi. Since A ⊆ A∪B it

follows that A ⊆
⋃

i∈I Vi, and since A is compact there is a finite subset J of I
with A ⊆

⋃
i∈J Vi. Similarly there is a finite subset K of I with B ⊆

⋃
i∈J Vi.

So A ∪ B ⊆
⋃

i∈J Vi ∪
⋃

i∈K Vi =
⋃

i∈J∪K Vi. Since J and K are finite, so
is J ∪ K, and we have produced a finite subcovering from an arbitrary open
covering of A ∪B. So A ∪B is compact.

If the space X is assumed to be Hausdorff then the set A is closed, since
compact implies closed in Hausdorff spaces (as we proved in lectures). It then
follows from Question 4 below that A ∩ B is compact. (Note that the result
in Question 4 is valid for all topological spaces, not just Hausdorff ones.)

2

3. Let (Ai)i∈I be any family of compact subsets of a metric space (X, d). Prove
that B =

⋂
i∈I Ai is compact, while

⋃
i Ai is not necessarily compact.

Solution.

An infinite union obviously need not be bounded. For example, in R let
Ai = [−i, i], for each positive integer i. Each Ai is compact, by Heine-Borel,
but

⋃∞
i=1 Ai = R is not bounded, so not compact.

For the other part it suffices to assume that X is a Hausdorff space. (This
is weaker than assuming that X is a metric space: all metric spaces are
Hausdorff, but there are Hausdorff spaces that are not metrizable.) Again,
we can use Question 4: choose a fixed i0 ∈ I, put A =

⋂
i 6=i0

Ai and put
B = Ai0 . Since X is Hausdorff the sets Ai are all closed, and so A is closed
(being an intersection of closed sets). Since B is compact it follows that A∩B
is compact. But A ∩B =

⋂
i∈I Ai.

4. Let A and B be subsets of a topological space X such that A is closed and B
is compact. Show that A ∩B is compact.

Solution.

Let (Vi)i∈I be a family of open sets such that A ∩ B ⊆
⋃

i∈I Vi. Let J be
a set obtained by adding one more element to I: say J = I ∪ {j}. Define
Vj = X \A, and observe that Vj is open since A is closed. Now for all b ∈ B,
we have either that b ∈ Vj (if b /∈ A), or else b ∈ A ∩ B ⊆

⋃
i∈I Vi, giving

b ∈ Vi for some i ∈ I. In either case b ∈ Vi for some i ∈ J . So the family
of sets (Vi)i ∈ J form an open covering of B, and since B is compact there
exists a finite subset L of J with B ⊆

⋃
i∈L Vi. Now the set L \ {j} is a finite

subset of J \{j} = I, and we can show that A∩B ⊆
⋃

i∈L\{j} Vi. For suppose
that b ∈ A ∩ B. Then b ∈ B ⊆

⋃
i∈L Vi, and so b ∈ Vi for some i ∈ L. But

b ∈ A, and so b /∈ X \ A = Vj . So b ∈ Vi for some i ∈ L \ {j}, as required.
Thus the arbitrarily chosen open covering (Vi)i∈I of the set A∩B has a finite
subcovering, namely (Vi)i∈L\{j}. Hence A ∩B is compact.

5. Let X be a non-empty set with d the standard discrete metric, and A any
subset of X. Show that A is compact if and only if A is finite.

Solution.

Recall that this metric satisfies d(x, y) = 1 whenever x 6= y. It follows that
for every x ∈ X the open ball B(x, 1

2 ) is just the singleton set {x}. Now
every subset A of X can be expressed as a union of open balls; specifically,
A =

⋃
x∈A{x}. So all subsets of X are open. This condition implies that the

compact sets are precisely the finite sets.
Firstly, suppose that A is a finite set, and suppose that A ⊆

⋃
i∈I Vi, where

the Vi are any subsets of X. For each a ∈ A we have a ∈
⋃

i∈I Vi, and so we
may choose an element ia ∈ I such that a ∈ Via

. Then A ⊆
⋃

a∈A Via
, and

since A is a finite set there are only finitely many terms in this union. So
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we have shown that every covering of A has a finite subcovering, and so A is
compact.
Conversely, suppose that A is a compact subset of X. Then the singleton sets
({x})x∈X form an open covering of A, since A ⊆ X =

⋃
x∈X{x}, and since the

singleton sets are open. By the compactness of A there is a finite subcovering;
that is, there is a finite subset B of X such that A ⊆

⋃
x∈B{x} = B. Since A

is a subset of the finite set B, it too is finite.

6. Let X be a compact metric space (or topological space), and A any infinite
subset of X. Show that A has an accumulation point in X. (That is, show
that A′ 6= ∅).

Solution.

Let A be a subset of X with no accumulation points in X. We shall show
that A is finite.
Let x ∈ X be arbitrary. Since x is not an accumulation point of A there is
an open neighbourhood Ux of x such that Ux ∩ A \ {x} = ∅. Equivalently,
Ux ∩ A ⊆ {x}. Since x ∈ Ux it follows that X ⊆

⋃
x∈X Ux. That is, the

family C = (Ux)x∈X is an open covering of X. Since X is compact, C has
a finite subcovering: there exists a finite subset {x1, x2, . . . , xm} of X with
X ⊆

⋃m
i=1 Uxi . (Indeed, this union equals X since X is the whole space.) It

follows that A = X ∩ A =
⋃m

i=1 Uxi ∩ A ⊆
⋃m

i=1{xi}. So A has at most m
points, and is therefore finite.
Consequently, any infinite subset A of X must have an accumulation point
in X.

7. Let X be a topological space and A a subspace of X. Prove that a set B ⊆ A
is compact in X if and only if B is compact in A (with respect to the subspace
topology on A).

Solution.

Suppose that A is compact in X. Let C be a covering of B by the subsets
of A which are open in the subspace topology on A. Then C = (Vi ∩ A)i∈I ,
where each Vi is an open subset of X (and I is an indexing set). Thus
B ⊆

⋃
i∈I(Vi ∩ A) ⊆

⋃
i∈I Vi, so that D = (Vi)i∈I is a covering of B by the

open sets in X. Since A is compact in X there is a finite subset J of I such
that B ⊆

⋃
i∈J Vi, and since B ⊆ A it follows that B = B∩A ⊆

⋃
i∈J(Vi∩A),

showing that (Vi ∩ A)i∈J is a finite subcovering of C. Since C was arbitrary,
this shows that B is compact as a subset of A.
Conversely, suppose that B is compact in the subspace topology, and let
(Vi)i∈I be a covering of B by open sets of X. Since B ⊆ A we see that
(Vi ∩A)i∈I is a covering of B by subsets of A, and furthermore these subsets
are open in the subspace topology. So there is a finite subset J of I such that
(Vi∩A)i∈J is a covering of B, and it follows that (Vi)i∈J is a finite subcovering
of the original open covering of B. Thus B is compact in X.
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8. Let X be a metric space (or topological space). Prove that X is compact if
and only if for every family (Fi)i∈I of closed subsets of X, if

⋂
i Fi = ∅ then

there is a finite subset {i1, i2, . . . , im} of I such that Fi1 ∩Fi2 ∩ · · · ∩Fim
= ∅.

Solution.

Suppose that X is compact and (Fi)i∈I is a family of closed subsets of X with⋂
i∈I Fi = ∅. By De Morgan’s Law, X = X \ ∅ = X \

⋂
i∈I Fi =

⋃
i∈I(X \Fi),

showing that (X \ Fi)i∈I is an open covering of X, since each Fi is closed.
Since X is compact, there is a finite subset J of I such that (X \ Fi)i∈J is a
covering of X. That is, X =

⋃
i∈J(X \ Fi). Thus, by De Morgan’s Law,

∅ = X \X = X \
(⋃
i∈J

(X \ Fi)
)

=
⋂
i∈J

(
X \ (X \ Fi)

)
=

⋂
i∈J

Fi,

showing, as desired, that there is a finite subset of I such that the intersection
of the corresponding sets Fi is empty.
Conversely, suppose the condition holds. Let (Vi)i∈I be an open covering of X;
that is, X =

⋃
i Vi. By De Morgan, ∅ = X\X = X\

(⋃
i Vi

)
=

⋂
i(X\Vi). Let

Fi = X \ Vi. Since each Vi is open, each Fi is closed. So (Fi)i∈I is a family of
closed sets with empty intersection. By the hypothesis there is a finite subset
J of I such that the subfamily (Fi)i∈J also has empty intersection. By De
Morgan,

X = X \ ∅ = X \
(⋂
i∈J

Fi

)
= X \

(⋂
i∈J

X \ Vi

)
=

⋃
i∈J

(
X \ (X \ Vi)

)
=

⋃
i∈J

Vi.

Hence an arbitrary open covering of X has a finite subcovering, and therefore
X is compact.

9. Let X be a metric space (or topological space). Prove that X is compact if
and only if every family (Fi)i∈I of closed subsets of X with the property that
every finite subfamily (Fi1 , Fi2 , . . . , Fim

) has a non-empty intersection has,
itself, a non-empty intersection.

Solution.

This is just the contrapositive of the result proved in the previous question.


