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1.

Tutorial 10

Determine which of the following subsets A are compact subsets in the ap-
propriate R™.

(i) A=10,2)

(it) A=Qn]0,1]

(1ii) A={(z1,72) ER?* |22 =0}

(iv) A={(z1,22) eR? |22 +22 <4} U{(1,2)}.

Solution.

(i) Compact sets are closed (in any Hausdorff space). Since [0,2) is not
closed it is not compact. (The open covering [0,2) C (5~ ,(—1,2 — 1)
has no finite subcovering.)

(ii) This set is not closed, and so it is not compact. (And, for example
AC U (-1, ("_an)ﬂ) U (("'zln)\/i, 2)) is an open covering for which
there is no finite subcovering.)

(iii) To be compact a set must be bounded; this set is not.

(iv) This set is closed and bounded; so it is compact (by Heine-Borel).

2. Let A and B be compact subsets of a topological space X. Show that AN B
and AU B are also compact.
Solution.

The question is wrong as stated: to prove that A N B is compact an extra
assumption is needed. However, A U B is necessarily compact. For suppose
that (Vi)icr is a family of open sets with AUB C J;; Vi. Since A C AUB it
follows that A C |J,c; Vi, and since A is compact there is a finite subset .J of I
with A C (J;c; Vi. Similarly there is a finite subset K of I with B C (J,.; V.
So AUB C U;c;ViUliex Vi = Uicsuk Vi- Since J and K are finite, so
is J U K, and we have produced a finite subcovering from an arbitrary open
covering of AU B. So AU B is compact.

If the space X is assumed to be Hausdorff then the set A is closed, since
compact implies closed in Hausdorff spaces (as we proved in lectures). It then
follows from Question 4 below that AN B is compact. (Note that the result
in Question 4 is valid for all topological spaces, not just Hausdorff ones.)

Let (A;);er be any family of compact subsets of a metric space (X, d). Prove
that B = [, A; is compact, while | J; A; is not necessarily compact.

Solution.

An infinite union obviously need not be bounded. For example, in R let
A; = [—i,1], for each positive integer i. Each A; is compact, by Heine-Borel,
but Uf; A; = R is not bounded, so not compact.

For the other part it suffices to assume that X is a Hausdorff space. (This
is weaker than assuming that X is a metric space: all metric spaces are
Hausdorff, but there are Hausdorff spaces that are not metrizable.) Again,
we can use Question 4: choose a fixed ig € I, put A = ﬂ#io A; and put
B = A,,. Since X is Hausdorff the sets A, are all closed, and so A is closed
(being an intersection of closed sets). Since B is compact it follows that AN B
is compact. But AN B =, 4.

Let A and B be subsets of a topological space X such that A is closed and B
is compact. Show that AN B is compact.

Solution.

Let (Vi)ier be a family of open sets such that AN B C (J,c; Vi. Let J be
a set obtained by adding one more element to I: say J = I U {j}. Define
Vj = X \ A, and observe that V; is open since A is closed. Now for all b € B,
we have either that b € V; (if b ¢ A), orelse b € AN B C |J;c; Vi, giving
b € V; for some ¢ € I. In either case b € V; for some i € J. So the family
of sets (V;)i € J form an open covering of B, and since B is compact there
exists a finite subset L of J with B C |J,.; Vi. Now the set L\ {;j} is a finite
subset of J\{j} = I, and we can show that ANB C ;¢\, Vi For suppose
that b€ ANB. Then b € B C |J,., Vi, and so b € V; for some i € L. But
be A andsob¢ X\ A=1V;. SobeV, for some i € L\ {j}, as required.
Thus the arbitrarily chosen open covering (V;);er of the set AN B has a finite
subcovering, namely (V;);er\{;)- Hence AN B is compact.

Let X be a non-empty set with d the standard discrete metric, and A any
subset of X. Show that A is compact if and only if A is finite.

Solution.

Recall that this metric satisfies d(z,y) = 1 whenever x # y. It follows that
for every x € X the open ball B(z, %) is just the singleton set {z}. Now
every subset A of X can be expressed as a union of open balls; specifically,
A =J calz}. So all subsets of X are open. This condition implies that the
compact sets are precisely the finite sets.

Firstly, suppose that A is a finite set, and suppose that A C (J;c; Vi, where
the V; are any subsets of X. For each a € A we have a € |J,c; Vi, and so we
may choose an element i, € I such that a € V;,. Then A C (J,c4 Vi,, and
since A is a finite set there are only finitely many terms in this union. So



3

we have shown that every covering of A has a finite subcovering, and so A is
compact.

Conversely, suppose that A is a compact subset of X. Then the singleton sets
({z})zex form an open covering of A4, since A C X = |J, . x {7}, and since the
singleton sets are open. By the compactness of A there is a finite subcovering;
that is, there is a finite subset B of X such that A C |J, {2z} = B. Since A
is a subset of the finite set B, it too is finite.

Let X be a compact metric space (or topological space), and A any infinite
subset of X. Show that A has an accumulation point in X. (That is, show
that A" # 0).

Solution.

Let A be a subset of X with no accumulation points in X. We shall show
that A is finite.

Let z € X be arbitrary. Since z is not an accumulation point of A there is
an open neighbourhood U, of x such that U, N A\ {z} = (. Equivalently,
Us NA C {x}. Since x € U, it follows that X C |J,.y U.. That is, the
family C = (U,)zex is an open covering of X. Since X is compact, C has
a finite subcovering: there exists a finite subset {z1,xa,... , 2z} of X with
X C U~ U,,. (Indeed, this union equals X since X is the whole space.) It
follows that A = X NA=U~, U, N A C U~ {z;}. So A has at most m
points, and is therefore finite.

Consequently, any infinite subset A of X must have an accumulation point
in X.

Let X be a topological space and A a subspace of X. Prove that a set B C A
is compact in X if and only if B is compact in A (with respect to the subspace
topology on A).

Solution.

Suppose that A is compact in X. Let C be a covering of B by the subsets
of A which are open in the subspace topology on A. Then C = (V; N A);er,
where each V; is an open subset of X (and I is an indexing set). Thus
B CUie;(VinA) € U, Vi, so that D = (V;);er is a covering of B by the
open sets in X. Since A is compact in X there is a finite subset J of I such
that B C (J,;c; Vi, and since B C A it follows that B = BNA C |, ,(ViNA),
showing that (V; N A);cs is a finite subcovering of C. Since C was arbitrary,
this shows that B is compact as a subset of A.

Conversely, suppose that B is compact in the subspace topology, and let
(Vi)ier be a covering of B by open sets of X. Since B C A we see that
(Vin A)ier is a covering of B by subsets of A, and furthermore these subsets
are open in the subspace topology. So there is a finite subset J of I such that
(ViNA);cs is a covering of B, and it follows that (V;);c is a finite subcovering
of the original open covering of B. Thus B is compact in X.
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Let X be a metric space (or topological space). Prove that X is compact if
and only if for every family (F;);cr of closed subsets of X, if (), F; = () then
there is a finite subset {i,%2,... 4, } of I such that F;, NF,,N---NF; =0.

Solution.

Suppose that X is compact and (F;);c; is a family of closed subsets of X with
Nicr Fi = 0. By De Morgan’s Law, X = X \0 = X \(;c; Fi = U;c; (X \ F3),
showing that (X \ F;);er is an open covering of X, since each F; is closed.
Since X is compact, there is a finite subset J of I such that (X \ F;);cs is a
covering of X. That is, X = (J;c;(X \ F;). Thus, by De Morgan’s Law,

P=x\X=X\(JxX\R)=NEX\X\F)=)F:

i€J i€ icJ

showing, as desired, that there is a finite subset of I such that the intersection
of the corresponding sets F; is empty.

Conversely, suppose the condition holds. Let (V;);cr be an open covering of X;
that is, X = (J,; Vi. By De Morgan, § = X\ X = X'\ (Ul Vi) =;(X\V;). Let
F; = X\ 'V;. Since each V; is open, each Fj is closed. So (F});cs is a family of
closed sets with empty intersection. By the hypothesis there is a finite subset
J of I such that the subfamily (F;);cs also has empty intersection. By De
Morgan,

X=Xx\0=Xx\(F)=x\(x\V)={J xX\(x\W) =V

ieJ icJ icJ icJ

Hence an arbitrary open covering of X has a finite subcovering, and therefore
X is compact.

Let X be a metric space (or topological space). Prove that X is compact if
and only if every family (F;);es of closed subsets of X with the property that
every finite subfamily (F;,, Fi,, ..., F;, ) has a non-empty intersection has,
itself, a non-empty intersection.

Solution.

This is just the contrapositive of the result proved in the previous question.



