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1. Let (X, d) be the metric space considered in Q.4 of the assignment: X is set
of all positive integers, and for all n, m ∈ X,

d(n, m) =
{

0 if n = m
1

v(|n−m|) if n 6= m,

where v(n) is the largest power of 2 that is a factor of n.

(i) Determine all n ∈ X such that d(n, 43) < 0.001.
(ii) Show that the sequence (1, 5, 21, . . . ), where the nth term an is given by

an = (22n − 1)/3 =
∑n−1

i=0 22i, is a Cauchy sequence in X.
(iii) Show that the sequence in Part (ii) is not convergent.
(iv) It is an elementary fact of number theory that every positive integer

n can be uniquely written in the form
∑∞

k=0 ck2k, where each ck is 0
or 1, and only finitely many of the ck are nonzero. (The binary notation
for n is then crcr−1 . . . c0, where r is the largest value of k for which
ck 6= 0.) Define X̂ to be the set of all formal sums

∑∞
k=1 ck2k, where

each ck is 0 or 1 (without any other restriction). Show how to define a
metric d̂ on X̂ so that (X, d) is a metric subspace of (X̂, d̂), and (X̂, d̂)
is complete. (The elements of X̂ are called 2-adic integers, and there is
also a natural way to define addition and multiplication on X̂. One can
similarly construct p-adic integers for any integer p > 1.)

Solution.

(i) The least k ∈ Z+ such that 1/2k < 0.001 is k = 10 (as 1/29 ≈ 0.00195
and 1/210 ≈ 0.000977). So d(n, 43) < 0.001 if and only if n = 43 + 1024m for
some nonnegative integer m.
(ii) Let ε > 0. Since 1/2k → 0 as k → ∞ we may choose k ∈ Z+ so that
1/2k < ε. Now let n > m > k. Then

|am − an| =
∣∣∣∣ (22n − 1)− (22m − 1)

3

∣∣∣∣ = 22m

(
22n−2m − 1

3

)
and since (22n−2m−1)/3 is an odd integer it follows that v(|am−an|) = 22m.
Since 2m > k we see that d(am, an) = 1

v(|am−an|) < 1/22m < 1/2k < ε.
Similarly, if m > n > k then d(am, an) = 1/22n < ε, and if m = n > k then
d(am, an) = 0 < ε. So d(am, an) < ε whenever m, n > k. So (an) is a Cauchy
sequence.
(iii) The metric d can also be described as follows. Let a, b be nonnegative
integers, and let a =

∑∞
k=1 sk2k and b =

∑∞
k=1 tk2k be the binary expansions
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of a and b (so that the coefficients sk and tk are all 0 or 1, and almost all of
them are 0. (In mathematical terminology, “almost all” means “all except for
possibly a finite number”.) If a 6= b, let K be the least k such that sk 6= tk.
Then sK − tK = ±1, and sk − tk = 0 for k < K. So

a− b = ±2K +
∑
k>K

(sk − tk)2k = 2K
(
±1 +

∞∑
i=1

(sK+i − tK+i)2i
)
,

and we see that the highest power of 2 that is a divisor of |a − b| is 2K . So
d(a, b) = 2−K . We have shown that if a 6= b then d(a, b) = 2−K , where K
is the least value of k for which the k-th binary coefficients of a and b are
different.
We now show that the sequence (an) does not converge. Suppose, for a
contradiction, that it does converge, and let the limit be l. Writing the the
integer l in binary notation gives l =

∑∞
k=0 tk2k, where the coefficients tk are

all either 0 or 1, and tk = 0 for all k > K, where K is some nonnegative integer.
Since an → l as n →∞, there exists an integer N such that d(an, l) < 2−K−2

for all n > N . In particular, let n be any integer such that n > N and
2n− 2 > K. Now an =

∑n−1
i=0 22i =

∑2n−2
k=0 sk2k, where sk is 1 for k even and

0 for k odd. Since 2n−2 > K, we know that if K is even then K +2 ≤ 2n−2
and sK+2 = 1, while if K is odd then K + 1 ≤ 2n − 2 and sK+1 = 1. But
d(an, l) = d

(∑2n−2
k=0 sk2k,

∑∞
k=0 tk2k

)
= 2−L where L is the least k such that

sk 6= tk. Since tk = 0 for all k > K, we know that either sK+1 6= tK+1

(if K is odd) or sK+2 6= tK+2 (if K is even). In either case, L ≤ K + 2.
So d(an, l) = 2−L ≥ 2−K−2. But d(an, l) < 2−K−2, since n > N . This
contradiction shows that the sequence (an) must converge.

(iv) Let x, y ∈ X̂. Then x =
∑∞

i=0 sk2k and y =
∑∞

i=0 tk2k for some
coefficients sk and tk (which are all either 0 or 1). If x 6= y, let K be the least
integer such that sk 6= tk. Define d̂(x, y) = 2−K . Put d̂(x, y) = 0 if x = y.
Observe that in the case that almost all of the sk’s and tk’s are zero, so that
x and y can be identified with nonnegative integers, d̂(x, y) = d(x, y).

We need to show that d̂ is a metric on X̂. It is clear that d̂(x, y) = d̂(y, x) for
all x, y ∈ X, and if x 6= y then d̂(x, y) > 0, and if x = y then d̂(x, y) = 0. It
remains to check the triangle inequality. Let x, y, z be arbitrary points of X̂.
If x = y or y = z or x = z then it is trivial that d̂(x, y)++d̂(y, z) ≥ d̂(x, z). So
assume that x, y and z are all distinct. Let x =

∑∞
k=0 rk2k, y =

∑∞
k=0 sk2k

and z =
∑∞

k=0 tk2k. Then d̂(x, z) = 2−K1 , where K1 is the least k such that
rk 6= tk. Similarly, d̂(x, y) = 2−K2 where K2 is the least k with rk 6= sk, and
d̂(y, z) = 2−K3 where K3 is the least k with sk 6= tk. Now since rK1 6= tK1 ,
we must have either rK1 6= sK1 or sK1 6= tK1 (or both). If rK1 6= sK1 then
the least k with rk 6= sk is less than or equal to K1; that is, K2 ≤ K1.
Similarly, if sK1 6= tK1 then K3 ≤ K1. So we must have either K2 ≤ K1 or
K3 ≤ K1. Hence either 2−K2 ≥ 2−K1 or 2−K3 ≥ 2−K1 , and in either case
2−K2 + 2−K3 > 2−K1 (since 2−K2 + 2−K3 > max{2−K2 , 2−K3}).
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Before proceeding further, let us note the following fact: if x =
∑∞

k=0 sk2k and
y =

∑∞
k=0 tk2k are elements of X̂ that agree in the first k places, in the sense

that sk = tk for all k ≤ K, then d̂(x, y) < 2−K . Indeed, either x = y, in which
case d̂(x, y) = 0 < 2−K , or else d̂(x, y) = 2−L where L = min{ k | sk 6= tk}.
In the latter case we must have L > K, since sk = tk for all k ≤ K, whence
2−L < 2−K , so that d̂(x, y) < 2−K in either case.

Let us show that X̂ is complete. Suppose that (xn)∞n=0 is a Cauchy sequence
in X̂. We show first that for any integer K ≥ 0 there exists an N such
that for all n, m > N the expansions of xn and xm agree in the first K
places. Indeed, given K, we can put ε = 2−K , and then choose N so that
d(xn, xm) < ε for all n, m > N . If xn and xm do not agree in the first K
places then d(xn, xm) = 2−M , where M is the least k such that ak 6= bk,
and in particular we must have M ≤ K. But since 2−M < ε = 2−K we
have that M > K, a contradiction. So xn and xm do agree in the first k
places, as claimed. Now for each k we can define a coefficient ck as follows:
choose an integer Nk such that xn and xm agree in the first k places for all
n, m > Nk, and define ck to be the k-th coefficient of xNk+1 (which is also
the k-th coefficient of xn for all n > Nk). Having defined ck like this for all
positive integers k, define x =

∑∞
k=0 ck2k ∈ X̂.

We can now show that xn → x as n → ∞. Let ε > 0, and choose K such
that 2−K < ε. Put N = max{Nk | 0 ≤ k ≤ K }, with the Nk as above. Let
n > N . Then for each k ∈ {1, 2, . . . , K} we have n > Nk, and so ck is the
k-th coefficient of xn. So for each k ∈ {1, 2, . . . , K}, the k-th coefficient of
xn is the same as the k-th coefficient of x. So xn and x agree in the first K
places, and so d̂(xn, x) < 2−K < ε. We have shown this on the assumption
that n > N ; so, we have shown, as required, that for all ε > 0 there exists N
such that d̂(xn, x) < ε for all n > N .

Although we have now answered all parts of the question, it is interesting to
note some extra things. In particular, it is possible to define operations of
addition and multiplication on X̂. Changing our notation, write elements of
X̂ as sequences rather than formal sums (so that we write . . . s3s2s1s0 instead
of

∑∞
k=0 sk2k). Now to add the sequences . . . s3s2s1s0 and . . . t3t2t1t0, proceed

as is normal for addition of numbers in binary notation: first add s0 and t0
(giving 0, 1 or 10), and if the answer is 10 “put down the 0 and carry 1”, and
continue on to add s1, t1 and any carrying figure, and so on. In this way we
obtain a perfectly satisfactory operation of addition on X̂ which extends the
operation of addition on X (the positive integers). Multiplication of positive
integers also extends naturally to a multiplication operation on X̂. These
operations make X̂ into a ring—indeed, integral domain—known as the ring
of 2-adic integers. The units are the elements . . . s3s2s1s0 with s0 = 1. Notice
that . . . 111 = −1 (as can easily be checked by adding . . . 111 and 1 = . . . 001
using the procedure outlined above). This also accords with the formula for
the sum of an infinite geometric series, since . . . 111 means

∑∞
i=0 2i, and by the

formula this is 1/(1− 2) = −1. The formula is applicable, because the series
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does converge in this space. In a similar fashion the limit of the sequence (an)
considered in parts (ii) and (iii) above can be identified with −1/3, since the
limit is

∑∞
i=0 22i = 1/(1− 22) = −1/3. (Alternatively, (22n− 1)/3 → −1/3 as

n →∞, since 22n → 0 as n →∞ using the 2-adic metric.)

2. Metric spaces (X, d) and (Y, d′) are said to be isometric if there is a bijective
function f :X → Y such that d(a, b) = d′(f(a), f(b)) for all a, b ∈ X.

(i) Show that d(a, b) = | arctan a − arctan b| defines a metric on R (where
arctan: R → [−π/2, π/2] is the inverse of tan).

(ii) Let d′ be the usual metric on R. Find a subspace of (R, d′) that is
isometric to (R, d).

(iii) Show that (R, d) is not complete.
(iv) Show that (R, d) and (R, d′) are homeomorphic (even though one is

complete and the other is not).
(v) Describe a complete metric space which has (R, d) as a dense subspace.

Solution.

Observe that arctan gives a bijective map from R to the interval (−π/2, π/2),
and d(a, b) = d′(arctan a, arctan b) for all a, b ∈ R. Since d′ is a metric on
(−π/2, π/2) it follows that d must be a metric on R, by Exercise 4 of Tutorial 5.
Since arctan is bijective and the equation d(a, b) = d′(arctan a, arctan b) holds,
we see that (R, d) and ((−π/2, π/2), d′) are isometric. Now ((−π/2, π/2), d′)
is a subspace of the complete space (R, d′), and we proved in lectures that a
subspace (S, D) of a complete metric space (X, D) is complete if and only if
S is closed as a subset of X. In this case, since (−π/2, π/2) is not closed as a
subspace of (R, d′), it follows that ((−π/2, π/2), d′) is not complete. Indeed,
it is easy to find a Cauchy sequence of points in (−π/2, π/2) whose limit in
R is π/2. For example, the sequence (xn) given by xn = π

2 −
1
n will do.

Such sequences do not converge in the space ((−π/2, π/2), d′). Applying the
isometry yields a non-convergent Cauchy sequence in (R, d). Specifically, (yn)
defined by yn = tan(π

2 −
1
n ) is such a sequence.

The identity mapping from R to R is actually a homeomorphism from (R, d)
to (R, d′). (So d and d′ are equivalent metrics.) For any a ∈ R and any
ε > 0 we can find a δ > 0 such that | tan(x) − tan(arctan a)| < ε whenever
|x − arctan a| < δ (since tan is continuous at the point arctan a). Putting
x = arctan y we conclude that |y− a| < ε whenever | arctan y− arctan a| < δ.
Thus Bd(a, δ) ⊆ Bd′(a, ε). Similarly, the fact that arctan is continuous at a
shows that for all ε > 0 there is a δ > 0 such that | arctanx − arctan a| < ε
whenever |x− a| < δ; that is, Bd′(a, δ) ⊆ Bd(a, ε).
The completion of ((−π/2, π/2), d′) is ([−π/2, π/2], d′), and similarly to com-
plete (R, d) we need to add just two extra points, which we might as well
call +∞ and −∞. The formula for the metric is on this bigger space is
still d(a, b) = | arctan a − arctan b|, where we interpret arctan∞ as π/2 and
arctan(−∞) as −π/2.


