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1. If a sequence (xn)∞n=1 in a metric space X is convergent and has limit
x, show that every subsequence (xnk

)∞k=1 of (xn) is convergent and has
the same limit x.

Solution.

Let ε > 0. Since xn → x as n →∞, there is N such that d(xn, x) < ε
for all n > N . By the definition of the concept of a subsequence,
(nk)∞k=1 is a strictly increasing sequence of positive integers. (That is,
n1 < n2 < n3 < · · · .) So there exists K such that nk > N for all
k > K. Thus d(xnk

, x) < ε for all k > K. As ε was arbitrary, this
shows that lim

k→∞
xnk

= x.

Alternatively, if one is prepared to use the corresponding result for
sequences of numbers, which is presumably covered in any course on
sequences and series, one can argue as follows. Since xn → x as n →∞
it follows that d(xn, x) → 0 as n →∞. Since (xnk

)∞k=1 is a subsequence
of (xn)∞n=1, so also (d(xnk

, x))∞k=1 is a subsequence of (d(xn, x))∞n=1.
Any subsequence of a convergent sequence of real numbers converges
to the same limit as the sequence itself; so d(xnk

, x) → 0 as k → ∞.
That is, xnk

→ x as k →∞.

2. Recall that `∞ is the metric space of all bounded sequences in R, with
metric d given by

d(x, y) = sup
k∈N

|xk − yk|.

Let M be the subset consisting of all sequences x = (xk) with at most
finitely many nonzero terms. Show that M is not closed. [Hint: Try
to produce a sequence in M converging to a point not in M .]

Solution.

For n = 1, 2, . . . , let xn be the sequence (xn,i)∞i=1 defined by

xn,i =
{

1/i if 1 ≤ i ≤ n
0 if i > n.
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That is, xn = (1, 1
2 , 1

3 , . . . , 1
n , 0, 0, . . . )). Then (xn) is a sequence in

M . Let x be the sequence whose i-th term is 1/i, for all i. That
is, x = (1, 1

2 , 1
3 , . . . , ). Then x ∈ `∞ but x /∈ M . Moreover, for all

n ∈ Z+,
d(x(n), x) = sup{ 1

n+1 , 1
n+2 , 1

n+3 , . . . } = 1
n+1 .

Thus d(xn, x) → 0 as n →∞, which means that (x(n)) → x as n →∞.
Hence x is in the closure of M , since it is the limit of a sequence in M .
Since x /∈ M it follows that M is not equal to its closure; that is, M is
not closed.

3. Let X = C[0, 1], the set of continuous functions on [0, 1], and let d be
the metric on X defined by

d(f, g) =
∫ 1

0

|f(x)− g(x)| dx.

For each n ∈ Z+ define fn ∈ X by fn(x) = xn for all x ∈ [0, 1].

(i) Show that the sequence (fn)∞n=1 converges in X, and find its
limit f .

(ii) Show that the function f in Part (i) is not the pointwise limit of
the sequence (fn).

[Hint: f is the continuous function which agrees with the pointwise
limit for almost all x ∈ [0, 1].]

Solution.

(i) Let f be the zero function, f(x) = 0 for all x ∈ [0, 1]. Then
f ∈ X, and for all n ∈ Z+

d(fn, f) =
∫ 1

0

|fn(x)− f(x)| dx =
∫ 1

0

xn dx = 1/(n + 1),

which tends to 0 as n →∞. So (fn) converges to f .

(ii) It is not true that lim
n→∞

fn(x) = f(x) holds for all x ∈ [0, 1], since

fn(1) = 1n = 1 for all n ∈ Z+, giving fn(1) → 1 as n → ∞,
whereas f(1) = 0. So f is not the pointwise limit of fn.
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4. Let d be the metric on X = C[a, b] defined by

d(f, g) = sup
x∈[a,b]

|f(x)− g(x)|.

Let (fn)∞n=1 be a sequence in C[a, b], and suppose that (fn) converges
uniformly on [a, b] to some function f . Prove that f is continuous on
[a, b], and hence show that (fn) converges in (X, d).

Solution.

We must show that f is continuous at each x0 in [a, b]. So we must
show that for each ε > 0 there is a δ > 0 such that |f(x)− f(x0)| < ε
whenever x satisfies |x− x0| < δ.
Let ε > 0. Since fn → f , there is N such that d(fn, f) < ε/3 for all
n ≥ N . For all x ∈ [0, 1],

|fn(x)− f(x)| ≤ sup
t∈[0,1]

|fn(t)− f(t)| = d(fn, f);

so |fn(x)−f(x)| < ε/3 for all n ≥ N and all x ∈ [a, b]. Now since fN is
continuous at x0, there exists δ > 0 such that |fN (x)− fN (x0)| < ε/3
whenever |x− x0| < δ. Hence if x satisfies |x− x0| < δ, then

|f(x)− f(x0)| < |f(x)− fN (x)|+ |fN (x)− fN (x0)|+ |fN (x0)− f(x0)|

<
ε

3
+

ε

3
+

ε

3
= ε.

Hence f is continuous on [a, b].

5. Let (X, d) be as in Question 4, and suppose that (fn) is a convergent
sequence in this space with limit f . (In other words, (fn) converges to
f uniformly on [a, b].)

Prove that
∫ b

a

fn(x) dx −→
∫ b

a

f(x) dx as n →∞.

Solution.

Let n ∈ Z+. Since

−|fn(x)− f(x)| ≤ fn(x)− f(x) ≤ |fn(x)− f(x)|

for all x ∈ [a, b], it follows that

−
∫ b

a

|fn(x)− f(x)| dx ≤
∫ b

a

fn(x)− f(x) dx ≤
∫ b

a

|fn(x)− f(x)| dx,
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and therefore∣∣∣∫ b

a

fn(x) dx−
∫ b

a

f(x) dx
∣∣∣ =

∣∣∣∫ b

a

fn(x)−f(x) dx
∣∣∣ ≤ ∫ b

a

|fn(x)−f(x)| dx.

Note that for all x ∈ [a, b],

|fn(x)− f(x)| ≤ sup
t∈[0,1]

|fn(t)− f(t)| = d(fn, f).

So we have∣∣∣∫ b

a

fn(x) dx−
∫ b

a

f(x) dx
∣∣∣ ≤ ∫ b

a

|fn(x)− f(x)| dx

≤
∫ b

a

d(fn, f) dx

≤ (b− a)d(fn, f)

−→ 0 as n →∞.

Hence
∫ b

a
fn(x) dx →

∫ b

a
f(x) dx as n →∞.


