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1. Sketch (where possible) the following sets A, and decide whether A is
an open subset, or a closed subset, or neither, of the appropriate space
Rn. Then for each A, find Int(A), A and Fr(A).

(i) A =
⋃

n∈N
(n, n + 1) (where N = {0, 1, 2, . . . }).

(ii) A = { (x1, x2) ∈ R2 | x1x2 = 0 }.
(iii) A = { (x1, x2) ∈ R2 | x1 ∈ Q } (where Q is the set of rational

numbers).
(iv) A = { (x1, 0) ∈ R2 | 0 < x1 < 4 }.

Solution.

(i) The set A is the positive half of the real line with the integers
removed:

0 1 2 3 4 5

Since each open interval (n, n + 1) is open, the set A is a union
of open sets, and hence open. (Note that in R1 with the usual
metric, the open interval (a, b) equals the open ball centred at
(a + b)/2 with radius (b − a)/2.) Since A is open, Int(A) = A.
The closure A is the set of all nonnegative real numbers (since
every open interval centred at a positive real number contains a
point in an interval (n, n + 1) for some n), and

Fr(A) = A \ Int(A) = {0, 1, 2, . . . } = N.

(ii) This time A is the set of points which lie on one or other of the
coordinate axes. Any circle whose centre is on one of the

axes will contain a point not on either axis; so A has no interior
points. That is, Int(A) = ∅. On the other hand, the complement
of A is open: if (x, y) ∈ R2 \ A then x 6= 0 and y 6= 0, and and
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the open disc with centre (x, y) and radius min(|x|, |y|) contains
no point on either axis (so that (x, y) ∈ Int(R2 \ A)). So A is
closed; so A = A. And Fr(A) = A \ Int(A) = A.

(iii) I can’t draw this set (points whose x-coordinate is rational). It is
easily seen that every circle in the plane contains points with
rational x-coordinate and points with irrational x-coordinate.
So all points of R2 are in A and no points are in Int(A). So
Int(A) = ∅ and A = R2 = Fr(A).

(iv) A is the line segment from (0,0) to (4,0):
(The endpoints (0, 0) and (4, 0) themselves are excluded.) No
circle in the plane is composed entirely of points on this line
segment; so Int(A) = ∅. The points (0, 0) and (4, 0) are in A since
any circle centred at either of these points will include points of
the line segment A. For every other point (x, y) ∈ R2 which is
not in A one can find a circle with centre (x, y) and radius small
enough that it does not contain any point on the line segment.
Specifically, if y 6= 0 we can choose the radius to be |y|/2, and
if y = 0 then x > 4 or x < 0, and we can take the radius to be
either x−4

2 or −x
2 (whichever is positive). So such points (x, y) are

not in A. So A is the line segment from (0, 0) to (0, 4) including
the endpoints. And since Int(A) is empty, Fr(A) = A.

2. Let A be an open subset of a metric space (X, d) and a ∈ A. Is A\{a}
open in X?

Solution.

Yes. Note first that X \ {a} is open, for if x ∈ X \ {a} is arbitrary
then Bd(x, 1

2d(a, x)) is contained in X \{a} (since a /∈ Bd(x, 1
2d(a, x))).

Since A \ {a} = A ∩ (X \ {a}, and the intersection of two open sets is
always open, the result follows.

3. Let (X, d) be a metric space, and A, B subsets of X with A ⊆ B.
Prove that Int(A) ⊆ Int(B).

Solution.

Let x ∈ Int(A) be arbitrary. Then there exists ε > 0 with Bd(x, ε) ⊆ A.
Since A ⊆ B it follows that Bd(x, ε) ⊆ B. So x ∈ Int(B). This holds
for all x ∈ Int(A); so Int(A) ⊆ Int(B).
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4. Let (X, d) be a metric space and A ⊆ X. Let x be a limit point of A.
Prove that every open ball with centre x contains an infinite number
of points of A, and use this to show that (A′)′ ⊆ A′.

Solution.

Let x be a limit point (accumulation point) of A, and let B = Bd(x, t)
be an open ball with centre x. Suppose that B does not contain an
infinite number of points of A. Since x is an accumulation point of A
there is at least one point of A in B \ {x}; our assumption says that
there are only finitely many such points. So let a1, a2, . . . , ak be all
the points of (B \ {x}) ∩ A. Since ai 6= x for each i, each distance
d(ai, x) is positive. Put s = mini(d(ai, x)), the smallest of these k
positive numbers. Then d(ai, x) ≥ s for each i, and so ai /∈ Bd(x, s)
for each i. But since x is an accumulation point of A there is a point
a ∈ (Bd(x, s) \ {x}) ∩ A. Now 0 < d(a, x) < s ≤ d(a1, x) < t (since
a1 ∈ Bd(x, t)), and it follows that a ∈ (Bd(x, t) \ {x}) ∩ A. But since
a 6= ai for each i (since d(x, a) < d(x, ai)) this contradicts the fact that
a1, a2, . . . , ak are all the points of (Bd(x, t) \ {x}) ∩ A. This contra-
diction shows that our original assumption that B does not contain
infinitely many points of A is false. Since B was an arbitrary open ball
centred at x, we have shown that every such ball contains infinitely
many points of A.
Let x ∈ (A′)′, and let B be an open ball with centre x. Then B contains
at least one point of A′; so choose b ∈ B ∩ A′. Since b ∈ B and B is
open there exists an open ball B1 with centre at b and B1 ⊆ B. Since
b ∈ A′, every open ball centred at b contains infinitely many points
of A. In particular, B1 contains infinitely many points of A, and since
B1 ⊆ B it follows that B contains infinitely many points of A. So B
contains at least one point of A different from x. This holds for all
open balls containing x; so x is an accumulation point of A. Thus we
have shown that every point of (A′)′ is in A′; that is, (A′)′ ⊆ A′, as
required.

5. Let (X, d) be a metric space.

(i) If A ⊆ B ⊆ X, prove that A′ ⊆ B′.

(ii) If A and B are subsets of X, prove that (A ∪B)′ = A′ ∪B′.

Solution.

(i) Suppose that A ⊆ B ⊆ X, and let x be an arbitrary point of A′.
Let U be an open neighbourhood of x. Then (U \ {x}) ∩ A 6= ∅.
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But since A ⊆ B it follows that (U \ {x}) ∩ A ⊆ (U \ {x}) ∩ B. So
(U \ {x}) ∩ B 6= ∅. This holds for all open sets U with x ∈ U ; so
x ∈ B′. This is true for all x ∈ A′; so A′ ⊆ B′.
(ii) Since A ⊆ (A ∪ B), it follows from (i) that A′ ⊆ (A ∪ B)′, and
equally B′ ⊆ (A ∪B)′. So A′ ∪B′ ⊆ (A ∪B)′.
Our strategy now is to show that points which are not in A′ and not
in B′ are not in (A ∪ B)′ (since this implies that if x ∈ (A ∪ B)′ then
either x ∈ A′ or x ∈ B′; that is, (A ∪ B)′ ⊆ A′ ∪ B′.) To say that
x ∈ A′ is to say that for every open neighbourhood U of x the set
A ∩ U \ {x} is nonempty. So to say that x /∈ A′ is to say that there
exists an open set U containing x such that A∩U \{x} = ∅. Similarly,
if x /∈ B′ then there is an open set V with x ∈ V and B ∩V \ {x} = ∅.
Choose such a U and such a V . Then U ∩ V is open and x ∈ U ∩ V .
Moreover,

(A ∪B) ∩ (U ∩ V ) \ {x} = (A ∩ (U ∩ V ) \ {x}) ∪ (B ∩ (U ∩ V ) \ {x})
⊆ (A ∩ U \ {x}) ∪ (B ∩ V ) \ {x}) = ∅.

So U ∩V is an open neighbourhood of x containing no points of A∪B
different from x. So x /∈ (A ∪B)′.

6. Let (X, d) be a metric space and A, B be two subsets of X. Prove
that:

(i) If A ⊆ B, then A ⊆ B.
(ii) A ∪B = A ∪B.
(iii) A ∩B ⊆ A ∩B.
Show that equality need not hold in Part (iii).

Solution.

(i) Recall from lectures that the closure of a set S is a closed set
containing S and contained in all the closed sets containing S.
Now suppose that A ⊆ B. Since B ⊆ B we have A ⊆ B. Since
B is closed and contains A, it contains A, as required.

(ii) We have A ⊆ A ⊆ A∪B and B ⊆ B ⊆ A∪B. So A∪B ⊆ A∪B.
Since the union of two closed sets is always closed, A∪B is closed.
Since it contains A ∪B it must contain the closure of A ∪B. So
A ∪B ⊆ A ∪B.
By the first part and the fact that A ⊆ A ∪ B it follows that
A ⊆ A ∪B. Similarly, since B ⊆ A∪B we find that B ⊆ A ∪B.
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So A∪B ⊆ A ∪B. Since the reverse inclusion was proved above,
A ∪B = A ∪B.

(iii) By Part (i) and A ∩ B ⊆ A we have A ∩B ⊆ A; similarly
A ∩B ⊆ B gives A ∩B ⊆ B. So A ∩B ⊆ A ∩B.

Let X = R with the usual metric. Let A be the open half-line (0,∞)
and B the open half-line (−∞, 0). Then A∩B = ∅, and so A ∩B = ∅.
But A = [0,∞) and B = (−∞, 0]; so A ∩B = {0} 6= A ∩B.

7. Let A = { (x1, x2) ∈ R2 | x1, x2 ∈ Q } (where Q is the set of all rational
numbers). Show that A = R2. Deduce that R2 is separable.

Solution.

A countable union of finite sets is countable: if A1, A2, A3, . . . are
finite sets then we can list all the elements of

⋃∞
i=1 Ai by listing the

elements of A1 first, then the elements of A2, then A3, and so on. It
follows that the set Z+ × Z+ = { (m,n) | m, n ∈ Z+ } is countable: it
equals

⋃∞
i=2 Ai, where Ai = { (m,n) | m, n ∈ Z+ and m + n = i }, a

finite set (for each i ≥ 2). Since (m,n) 7→ m/n is a surjective map from
Z+ × Z+ to Q+, the set of positive rational numbers, it follows that
Q+ is countable. So Q is countable, since we can list the elements of Q
in the order q1, −q1, q2, −q2, . . . , where qi is the i-th term in a listing
ogf the elements of Q+. So we obtain a one to one correspondence
between Z+ and Q, and therefore there is a one to one correspondence
between Z+ × Z+ and Q×Q. But Z+ × Z+ is countable; so Q×Q is
countable. That is, A is countable.
Let (x, y) ∈ R2, and let ε > 0 Choose a positive integer k with
10−k < ε/

√
2, and let X be the integer part of 10kx and Y the in-

teger part of 10ky. (That is, X ∈ Z satisfies X ≤ 10kx < X + 1, and
similarly for Y .) Then (10−kX, 10−kY ) ∈ A, and

d((10−kX, 10−kY ), (x, y)) =
√
|10−kX − x|2 + |10−kY − y|2

= 10−k
√
|X − 10kx|2 + |Y − 10ky|2

< 10−k
√

2 < ε.

Thus B((x, y), ε) contains a point of A, and since this holds for all
ε > 0 it follows that (x, y) ∈ A. But (x, y) was an arbitrary point
of R2; so A = R2. In other words, A is dense in R2. So R2 has a
countable dense subset (and this is what separable means).
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8. Let (Y, dY ) a metric subspace of a metric space (X, d) and H ⊆ Y .
Prove that H is closed in Y if and only if there exists a closed subset
C in X such that H = C ∩ Y .

Solution.

Let us prove first that a subset J of Y is open in Y if and only if there
is an open subset U of X such that J = U ∩ Y . For a ∈ Y and ε > 0
let us write BY (a, ε) = { y ∈ Y | dY (a, y) < ε }, and observe that
BY (a, ε) = Y ∩BX(a, ε), where BX(a, ε) = {x ∈ X | d(a, x) < ε }.
Suppose first that J = U ∩Y , where U is open in X. Let a ∈ J . Then
a ∈ U , and so there is an ε > 0 such that BX(a, ε) ⊆ U . So

BY (a, ε) = Y ∩BX(a, ε) ⊆ Y ∩ U = J.
This shows that a is an interior point of J in the metric space Y , and
since a was an arbitrary point of J it follows that J is open in Y .
Conversely, suppose that J is open in Y . Then every point of J
is contained in an open ball contained in J . So J is the union of
the sets in the collection S = {BY (a, ε) | BY (a, ε) ⊆ J }. Now let
T = {BX(a, ε) | BY (a, ε) ∈ S }, and let U be the union of all the sets
in the collection T . Then U is open, since it is a union of open balls.
And

Y ∩ U = Y ∩
⋃

B∈T
B =

⋃
B∈T

(Y ∩B) =
⋃

D∈S
D = J

since the sets in the collection S are precisely the intersections with
Y of the sets in T . So J is the intersection with Y of an open subset
of X.
Observe that Y ∩ C = H if and only if Y ∩ (X \ C) = Y \ H. Since
H is closed in Y if and only if Y \H is open in Y , and C is closed in
X if and only if X \C is open in X, the result follows. (If H = Y ∩C
with C closed, then Y \H = Y ∩ (X \C) is open since X \C is open;
so H is closed. Conversely, if H is closed we can find an open U with
Y ∩ U = Y \H, and then H = Y ∩ C where C = X \ U .)

9. Let Z+ = {1, 2, 3, . . . }, the set of all positive integers, considered as
a subspace of the metric space (R, d) (where d is the usual metric).
Describe the open sets of Z+.

Solution.

With this metric, all subsets of Z+ are open. If n ∈ Z+ then the open
ball with radius 1/2 centred at n contains n and no other element of
Z+. So {n} is an open set in Z+. Since every subset of Z+ is a union
of sets of this form, all subsets of Z+ are open.


