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Tutorial 3

1. Sketch (where possible) the following sets A, and decide whether A is
an open subset, or a closed subset, or neither, of the appropriate space
R™. Then for each A, find Int(A), A and Fr(A).

(iv)
Solution.

(4)

A= U (n, n+1) (where N={0, 1, 2, ... }).
neN

A= {(ZCl,xQ) € R2 | T1To = 0}
A = {(z1,22) € R? | 21 € Q} (where Q is the set of rational
numbers).

A={(21,0) eR?|0< 2 <4}.

The set A is the positive half of the real line with the integers
removed:

0 1 2 3 4 5

Since each open interval (n,n + 1) is open, the set A is a union
of open sets, and hence open. (Note that in R! with the usual
metric, the open interval (a,b) equals the open ball centred at
(a + b)/2 with radius (b — a)/2.) Since A is open, Int(A) = A.
The closure A is the set of all nonnegative real numbers (since
every open interval centred at a positive real number contains a
point in an interval (n,n + 1) for some n), and

Fr(A) = A\ Int(A) = {0,1,2,...} = N.

This time A is the set of points which lie on one or other of the
coordinate axes. Any circle whose centre is on one of the

axes will contain a point not on either axis; so A has no interior
points. That is, Int(A) = (). On the other hand, the complement
of A is open: if (z,y) € R?\ A then z # 0 and y # 0, and and

2

the open disc with centre (z,y) and radius min(|z|, |y|) contains
no point on either axis (so that (z,y) € Int(R?\ A)). So 4 is
closed; so A = A. And Fr(A) = A\ Int(A) = A.

(ii1) T can’t draw this set (points whose z-coordinate is rational). It is
easily seen that every circle in the plane contains points with
rational z-coordinate and points with irrational z-coordinate.
So all points of R? are in A and no points are in Int(A4). So
Int(A) = 0 and A = R? = Fr(4).

(iv) A is the line segment from (0,0) to (4,0):

(The endpoints (0,0) and (4,0) themselves are excluded.) No
circle in the plane is composed entirely of points on this line
segment; so Int(A) = (). The points (0,0) and (4,0) are in A since
any circle centred at either of these points will include points of
the line segment A. For every other point (z,y) € R? which is
not in A one can find a circle with centre (z,y) and radius small
enough that it does not contain any point on the line segment.
Specifically, if y # 0 we can choose the radius to be |y|/2, and
if y =0 then x > 4 or x < 0, and we can take the radius to be
either 54 or < (whichever is positive). So such points (z,y) are
not in A. So A is the line segment from (0, 0) to (0,4) including
the endpoints. And since Int(A) is empty, Fr(4) = A.

2. Let A be an open subset of a metric space (X,d) and a € A. Is A\ {a}
open in X7

Solution.
Yes. Note first that X \ {a} is open, for if x € X \ {a} is arbitrary
then By(z, 3d(a, z)) is contained in X \{a} (since a ¢ Bq(z, 3d(a, x))).
Since A\ {a} = AN (X \ {a}, and the intersection of two open sets is
always open, the result follows.

3. Let (X,d) be a metric space, and A, B subsets of X with A C B.
Prove that Int(A) C Int(B).

Solution.

Let x € Int(A) be arbitrary. Then there exists ¢ > 0 with By(x,¢) C A.
Since A C B it follows that By(x,e) € B. So = € Int(B). This holds
for all z € Int(A); so Int(A) C Int(B).
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4. Let (X,d) be a metric space and A C X. Let = be a limit point of A.

Prove that every open ball with centre x contains an infinite number
of points of A, and use this to show that (A’) C A’

Solution.

Let z be a limit point (accumulation point) of A, and let B = By(x,t)
be an open ball with centre x. Suppose that B does not contain an
infinite number of points of A. Since z is an accumulation point of A
there is at least one point of A in B\ {z}; our assumption says that
there are only finitely many such points. So let a1, ao, ..., a; be all
the points of (B \ {z}) N A. Since a; # =z for each i, each distance
d(a;,x) is positive. Put s = min;(d(a;,x)), the smallest of these k
positive numbers. Then d(a;,x) > s for each i, and so a; ¢ Bgy(z,s)
for each i. But since z is an accumulation point of A there is a point
a € (Bg(z,s) \ {z}) N A. Now 0 < d(a,z) < s < d(a,x) <t (since
a1 € By(z,t)), and it follows that a € (Bg(x,t) \ {z}) N A. But since
a # a; for each i (since d(z,a) < d(z,a;)) this contradicts the fact that
ai, az, ..., aj are all the points of (Bg(xz,t) \ {z}) N A. This contra-
diction shows that our original assumption that B does not contain
infinitely many points of A is false. Since B was an arbitrary open ball
centred at x, we have shown that every such ball contains infinitely
many points of A.

Let x € (A’)’, and let B be an open ball with centre x. Then B contains
at least one point of A’; so choose b € BN A’. Since b € B and B is
open there exists an open ball B; with centre at b and By C B. Since
b € A, every open ball centred at b contains infinitely many points
of A. In particular, By contains infinitely many points of A, and since
By C B it follows that B contains infinitely many points of A. So B
contains at least one point of A different from x. This holds for all
open balls containing z; so x is an accumulation point of A. Thus we
have shown that every point of (A’)" is in A’; that is, (A’) C A’, as
required.

Let (X, d) be a metric space.
(i) If AC BC X, prove that A’ C B’.
(i) If A and B are subsets of X, prove that (AUB) = A" UB’.

Solution.

(i) Suppose that A C B C X, and let x be an arbitrary point of A’.
Let U be an open neighbourhood of x. Then (U \ {z}) N A # 0.
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But since A C B it follows that (U \ {z}) N A C (U\ {z}) N B. So
(U\ {z}) N B # 0. This holds for all open sets U with z € U; so
x € B’. This is true for all x € A’; so A’ C B'.

(i) Since A C (AU B), it follows from (i) that A" C (AU B)’, and
equally B’ C (AUB)". So A/UB’ C (AU B)".

Our strategy now is to show that points which are not in A’ and not
in B’ are not in (AU B)’ (since this implies that if x € (AU B)’ then
either x € A’ or x € B’; that is, (AU B)' C A’ U B’.) To say that
x € A’ is to say that for every open neighbourhood U of x the set
ANU\ {z} is nonempty. So to say that z ¢ A’ is to say that there
exists an open set U containing x such that ANU \ {z} = 0. Similarly,
if z ¢ B’ then there is an open set V with z € V and BNV \ {z} = 0.
Choose such a U and such a V. Then UNV isopen and x € UN V.
Moreover,

(AUB)NUNV)\{z}=AnUNV)\{zhu(BnUNV)\{x})
C(ANU\ e UBNV)\ {2}) =0.

So UNYV is an open neighbourhood of = containing no points of AUB
different from z. So = ¢ (AU B)’.

Let (X,d) be a metric space and A, B be two subsets of X. Prove
that:

(i) If AC B, then AC B.

(ii) AUB=AUB.

(iii) ANBC ANB.

Show that equality need not hold in Part (4ii).

Solution.

(i) Recall from lectures that the closure of a set S is a closed set
containing S and contained in all the closed sets containing S.
Now suppose that A C B. Since B C B we have A C B. Since
B is closed and contains A, it contains A, as required.

(1) Wehave AC AC AUBand BC BC AUB. So AUB C AUB.
Since the union of two closed sets is always closed, AUB is closed.
Since it contains A U B it must contain the closure of AU B. So
AUBC AUB.

By the first part and the fact that A C A U B it follows that
A C AU B. Similarly, since B C AU B we find that B C AU B.
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So ZEF C AU B. Since the reverse inclusion was proved above,
AUB=AUB.
(i) By Part (i) and AN B C A we have ANB C A; similarly
ANBCBgives ANBCB. So AnNBCANB.
Let X = R with the usual metric. Let A be the open half-line (0, c0)
and B the open half-line (—~00,0). Then ANB = (), and so AN B = .
But A = [0,00) and B = (—00,0]; 50 AN B ={0} # AN B.

Let A = { (z1,22) € R* | 21, 25 € Q} (where Q is the set of all rational
numbers). Show that A = R%. Deduce that R? is separable.

Solution.

A countable union of finite sets is countable: if Ay, A, A3, ... are
finite sets then we can list all the elements of [ J;~, A; by listing the
elements of A first, then the elements of As, then Az, and so on. It
follows that the set ZT x ZT = { (m,n) | m, n € Z* } is countable: it
equals (J;—, A;, where A; = {(m,n) |[m,n € Z" and m+n =1}, a
finite set (for each ¢ > 2). Since (m,n) — m/n is a surjective map from
7T x Z* to QT, the set of positive rational numbers, it follows that
Q™ is countable. So Q is countable, since we can list the elements of Q
in the order q1, —q1, g2, —qo, ..., where ¢; is the i-th term in a listing
ogf the elements of Q. So we obtain a one to one correspondence
between Z* and Q, and therefore there is a one to one correspondence
between ZT x ZT and Q x Q. But Z* x Z* is countable; so Q x Q is
countable. That is, A is countable.

Let (x,y) € R% and let ¢ > 0 Choose a positive integer k with
107% < ¢//2, and let X be the integer part of 10¥2 and Y the in-
teger part of 10%y. (That is, X € Z satisfies X < 10z < X + 1, and
similarly for Y.) Then (107*X,107%Y") € A4, and

(107X, 1074Y), (2,9)) = /|107FX — a2 + [10-+Y —yJ?

= 10_k\/|X — 10Fx|2 + |Y — 10%y|?
< 10_’“\@ < e.

Thus B((z,y),e) contains a point of A, and since this holds for all
e > 0 it follows that (x,y) € A. But (z,y) was an arbitrary point
of R?; so A = R2. In other words, A is dense in R?. So R? has a
countable dense subset (and this is what separable means).
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Let (Y,dy) a metric subspace of a metric space (X,d) and H C Y.
Prove that H is closed in Y if and only if there exists a closed subset
Cin X such that H=CnNY.

Solution.

Let us prove first that a subset J of Y is open in Y if and only if there
is an open subset U of X such that J =UNY. Fora €Y ande > 0
let us write By (a,e) = {y € Y | dy(a,y) < €}, and observe that
By (a,e) =Y N Bx(a,¢), where Bx(a,e) ={x € X | d(a,z) <e}.
Suppose first that J = U NY, where U is open in X. Let a € J. Then
a € U, and so there is an € > 0 such that Bx(a,e) CU. So
By(a,e) =Y NBx(a,e) CYNU = J.

This shows that a is an interior point of J in the metric space Y, and
since a was an arbitrary point of J it follows that J is open in Y.

Conversely, suppose that J is open in Y. Then every point of J
is contained in an open ball contained in J. So J is the union of
the sets in the collection & = { By (a,¢) | By(a,e) C J}. Now let
7 = {Bx(a,¢) | By(a,e) € S}, and let U be the union of all the sets
in the collection 7. Then U is open, since it is a union of open balls.

And ynu=yn|JB=JwnB)=|JD=J

BeT BET DeS
since the sets in the collection & are precisely the intersections with

Y of the sets in 7. So J is the intersection with Y of an open subset
of X.

Observe that Y NC = H if and only if Y N (X \ C) =Y \ H. Since
H is closed in Y if and only if Y\ H is open in Y, and C' is closed in
X if and only if X \ C is open in X, the result follows. (If H =Y NC
with C closed, then Y\ H =Y N (X \ C) is open since X \ C' is open;
so H is closed. Conversely, if H is closed we can find an open U with
YNU =Y\ H, and then H =Y NC where C = X \U.)

Let ZT = {1, 2,3, ...}, the set of all positive integers, considered as
a subspace of the metric space (R,d) (where d is the usual metric).
Describe the open sets of Z*.

Solution.

With this metric, all subsets of ZT are open. If n € Z* then the open
ball with radius 1/2 centred at n contains n and no other element of
Z*. So {n} is an open set in Z*. Since every subset of ZT is a union
of sets of this form, all subsets of Z* are open.



