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1. Let X be any non-empty set. Define d(z,y) by
0, if x =y,
d(z,y) = :
1, if x #y.
Show that d is a metric on X.
Solution.
It is immediate that d(x,y) = d(y,z) for all x, y € X, with d(z,y) = 0 if
and only if z = y. So it remains to prove that d(y,z) < d(z,y) + d(z, 2)
for all z, y, z € X. Now d(z,y) + d(z,z) > 1 unless d(z,y) = d(z,z) = 0,
which only happens if = y and « = z, in which case d(y, z) = 0 also, giving
d(y,z) =d(z,y) + d(y, z). And when d(z,y) + d(x,z) > 1 it is also true that
d(y, z) < d(x,y) + d(z, 2), since d(y, z) < 1.
2. For z = (z1,22) and y = (y1,y2), define
d(z,y) = |21 — y1| + |z2 — Y2
d'(z, y) = max(|z1 — y1, |22 — y2)
d"(z,y) = min(|jz1 —y1|, [x2 — yal).
Which of d, d’, d" are metrics on R2?
Solution.

We showed in lectures that d,(z,y) = /|1 — y1]P + |22 — y2[P is a metric
on R? for all p > 1. (In fact, we showed the analogous result for C*.) The
function d defined above is d;, and is therefore a metric. The main part of
the proof is the observation that
= 21] + ly2 — 22| < (|or — gl + |22 — g2]) + (Jo1 — 21| + |22 — 22])

for all &;, y; and z; (which follows from |a+b| < |a|+|b| by putting a = y; —z;
and b= x; — z).

We also proved in lectures that deo(z,y) = lim dp(z,y) = max; |x; — yil.

p—oo

That is, the function d’ defined above coincides with do, for R2. It is also a
metric, since for some j,

max |y; —zi| = |yj — 2| < [y; — 2]+ [aj — 2] < max |z —yi +max |z —zl,
the other requirements being obviously satisfied.

The function d” is not a metric, since (for example) d”((0, 1), (0,0)) = 0, even
though (0,1) # (0,0).
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Let X = £°°, the set of all bounded real sequences, that is all real infinite
sequences (x) such that sup |zg| < oo, and for z, y € X, define
keN

d(lﬂ y) = sup |zy — yk|-
keN

Show that d is a metric on X.

Solution.

Let x, y € X. Then z, y are bounded sequences, and so there exist A, B € R
such that || < Aand |yx| < Bforallk € N. So |z —yx| < |zg|+]|yx| < A+B
for all k, and therefore supy |zr — yi| exists (since every bounded set of real
numbers has a supremum). So d is well-defined. Since |z — yi| = |yx — =k
for all k it follows that d(z,y) = d(y,z). If d(x,y) = 0 then for all i we have
0 < |x; —yi| < supy |zx —yr| = 0, and so & = y; conversely, clearly d(z,z) =0
for all x € X. So it remains to prove the triangle inequality.

Let x, y, z € X. For all i € N we have

yi — 2| < lyi — @il + o — 2] < sup |2k — Y| +sup lyk — 2| = d(z,y) +d(z, 2).

So d(z,y) + d(x,2) is an upper bound for the set { |y; — z| | i € N}, and it
follows that sup; |y; —zi| < d(z,y)+d(z,2). That is, d(y, z) < d(z,y)+d(z, 2),
as required.

Let Cla, b] be the set of all continuous real-valued functions defined on [a, b].
For f, g € Cla, b] define

di(f, 9) = sup [f(z) = g()]

z€la, b]
b
da(f, g) = / (@) - g(x)|de

Show that dy and dy are metrics on Cla, b].

Solution.

It is a standard theorem of real analysis that a continuous function on a
closed interval achieves a maximum value on the interval. So for each pair of
elements f, g € C|a, b] there exists a t € [a, b] such that di(f, g) = |f(t) —g(t)].
So if f, g, h € C[a,b], then, for some t € [a, ],

di(f,9) = [f(t) —g®)] < |f (&) = h(O)] + |h(t) — g(t)] < dv(f, h) + di(D, g),

(since [f(t) — h(t)] < sup,epep |f(z) = f(2)] = di(f, ), ete.). It is clear that

dl(fag) = dl(g f)a for all fa g € C[avb]v since |f(£L’) - g($)| = ‘g(ZL’) - f(l’)‘
for all x € [a,b]. And since sup,c(,|f(z) — g(z)| = 0 if and only if
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|f(x) — g(x)] = 0 for all x € [a,b], we see that di(f,g) = 0 if and only if
f=g9

Since [} |f(x) = g(z)|dz = [ |g(x) — f(z)| dz, we have da(f,9) = da(g, f)
for all f, g € Cla,b]. Clearly do(f, f) = fdex =0, for all f € Cla,b]. If
f # g then there exists ¢ € [a,b] with |f(t) — ¢g(t)] = ¢ > 0, and by continuity
|f(z) — g(x)] > ¢/2 for all z in some neighbourhood of t. Thus, there exist
p, g with a < p < ¢ < band |f(z) — g(x)] > ¢/2 for all x € [p,q]. Since
|f(z) — g(z)| > 0 for all other points z € [a, b] it follows that

/ (@) — g(@) dz > (g — p)e/2 > 0.

Thus da(f,g) = 0 only when f =g. And for all f, g, h € Cla, ],

/ (@) - g()|da

< [ 17 - + 1) — o)l do

/lf |daz+/ () — g(z)] da

=da(f,h) +da(h,g)

5. For z and y in R, define
d/(l’, y) = ‘I - y|
Show that d’ is a metric on R.
Solution.

It is clear that d'(z,y) = d'(y, ), and d'(z,y) = 0 if and only if x = y. Let
x,y, z € R. Suppose that d'(y, z) > d'(z,y) + d'(=, ) Since f(z) = 2? is an
increasing function on [0, 00) it follows that (d'(y, 2))? > (d'(z,y) + d'(z, 2))%.
That is,

ly— 2| > (V]z =yl + ]z —2])? =

but since it is a standard fact that

[z =yl + |z = 2[ + 2V ]z — yl|lz — 2],

ly — x|+ |z —2[ > |y — 2|,

it follows that 24/|z — y||z — z| < 0, which is impossible. So we must have
d'(y,z) < d'(x,y) + d'(z, 2).
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Let (X, d) be a metric space. Define d’: X x X — R by
d'(z,y) = min (17 d(z, y))

Show that d’ is a metric on X.

Solution.

Let z, y € X. Since d(z,y) = d(y,x) > 0 it follows that
d'(y,z) = min(1,d(y,z)) = min(1,d(z,y)) = d'(z,y) > 0.

And if min(1,d(x,y)) = 0 then d(x,y) = 0, which gives x = y since d is a
metric. So d'(z,y) =0 if and only if x = y.

Let z,y, 2 € X. We must show that d'(z,y) + d'(z,z) > d'(y,z). Now
d'(y,z) < 1, and so if either d'(z,y) = 1 or d'(z,z) = 1 then the desired
inequality holds. But if both d’'(z,y) < 1 and d'(z,2) < 1 then

d(z,y) +d (z,2) = d(x,y) + d(z,2) 2 d(y, z) = d'(y, 2),
as required.
Let (X, d) be a metric space. Define d’ : X x X — R by

d(z, y)

d/(x, y) = m

Show that d’ is a metric on X.

Solution.

Since d(z,y) = d(y,x) > 0, also d'(x,y) = d'(y,x) > 0. And d'(z,y) = 0 if
and only if d(z,y) = 0; so d'(z,y) =0 if and only if z = y. Let z, y, z € X,
and put a = d(y,z2), b = d(gc y) and ¢ = d(z,z). Then a < b+ c¢. So by
Question 7 of Tutorial 2, 13 < 1ib + 14 Thus d'(y,z) < d'(z,y)+d(y, 2).
Let X be the set of all real sequences. For z = (z1) and y = (y) in X, define
N
d(z, y) = —_

Show that d is a metric on X.

Solution.

; 1 _|Zk—yx| 1 ; i ;
Since 5x THon—yr] < 3% the series defining d(z,y) converges. It is clear

that d(z,y) = d(y,x) > 0, and d(z,y) = 0 only if all terms of the series
are 0, which forces z = y for all k, and so z = y. If z, y, 2 € X then
lye — 26| < |zk — yi| + |xk — 21| for all k, and (as in Question 7) this gives
1_|£’|’;:f’”2‘k‘ < 1);’”‘3;3’;'” —+ 1_‘:”";;?;‘“ for all k. Multiplying by 2% and summing

over k gives d(y, z) < d(x,y) + d(z, 2).




