Week 9 Summary

Lecture 17

Let ni, ng, ..., ng be positive integers. The direct sum of Z,,,, Z, ..., Ly, is
defined to be the set of all k-tuples (ay,aq,...,ax) such that a; € Z,, for each i.
We use “@” to denote direct sum. Thus,

Z3@Z5@Z7:{(a,b,6)|a623, b e Zs, C€Z7}.

We can define addition and multiplication for k-tuples componentwise. Thus in
Zs D Zs b Z7 we have

(2,4,3) 4+ (2,3,6) = (4,7,9) = (1,2,2)
and
(2,4,3)(2,3,6) = (4,12,18) = (1,2,4).

Since 3, 5 and 7 are divisors of 105 there are homomorphisms from Zig5 to Zs, Zs
and Zr, as explained in Lecture 16. If we call these f, g and h (respectively) then
we can combine them into a homomorphism from Zo5 to Zs ® Zs ® Z7 given by
the rule

a— (f(a),g(a), h(a))

for all a € Z195. Thus, for example,
56 — (56, 56,56) = (2,1,0)

(since 56 = 2 in Z3, and so on). The Chinese Remainder Theorem tells us that this
mapping is a one to one correspondence between between Zqg5 and Zs ® Zs P Z7,
since for each triples (a, b, ¢) in Zs @® Zs & Zr there is a unique x € Zjo5 such that
x = a (mod 3), x = b (mod 5) and z = ¢ (mod 7). We can, for example, find
the element of Z105 that maps to (1,4, 3) by solving the simultaneous congruences
x =1 (mod 3), £ = 4 (mod 5) and z = 3 (mod 7) using the method given in
Lecture 15. The solution is 94.

A homomorphism that is a one to one correspondence is called an isomorphism.
The Chinese Remainder Theorem can be restated as follows: if mq, ma, ..., my
are pairwise coprime then there is an isomorphism

Lonimgeeine — Loy @ Loy @ . @ Ly,

given by a +— (a1, as,...,ax) (for all a), where a = a; (mod m;) for each i.
We say that Z,,my..m, and Zy,, ® Zp,, © ... ® Ly, are isomorphic.

In the Chinese Remainder Theorem isomorphism, the element of the direct sum
Loy ® Loy ® . . . ® Ly, corresponding to 1 € Zyy,my...m,, i the k-tuple (1,1,...,1).
So if @ € Zmymy.--m,, corresponds to (ai,as,...,ak) € ZLm, ® Ly, @ . .. S Ly, then
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a has an inverse in Zy,,m,...m, if and only if a; has an inverse in Z,,, for each 1.
This yields the following Proposition.

*Proposition: If mi, mo, ... my are pairwise coprime positive integers then
p(mimg - -my) = @(ma)p(mz) - - - p(mg).

The proof consists of recalling that the number of invertible elements of Z,, is
©(m), and hence the number of k-tuples (a1, az2,...,a%) € Zp, ©Zim, B ... 0 L,
such that each a; is invertible is p(mq)p(ms) - - - @(my).

*Proposition: If p is prime and n € ZT then p(p") = p™ — p"~! = p(1 — %)
*Proposition: If m is a positive integer then

p(m) =m(l = 51— p)- (1= )

where p1, po, ..., pr are the distinct prime divisors of m.

_ _ 700x4x6 _
For example, ¢(700) = 700(1 — (1/2))(1 — (1/5))(1 — (1/7)) = 5555 = 240.
Lecture 18

Example: Solve, in Zgs5, the equation z3 = 41.

By the Chinese Remainder Theorem, each x € Zjp5 corresponds to a triple
(1,29, 23) in Zs ® Zs ® Z. Consequently the problem can be restated as follows:
solve (z3, 23, 23) = (41,41,41) = (2,1,6) in Z3 & Zs ® Z7. Now the cubes of the
elements 0, 1 and 2 in Z3 are (respectively) 0, 1 and 8 = 2; so 2§ = 2 gives 1 = 2.
In Zs the cubes of 0,1, 2,3 =—-2and 4= —-1are0,1,8 =3, -8 =2 and —1 = 4.
So z3 = 1 gives 9 = 1. In Z7 the cubes of 0, 1, 2, 3, —3, —2 and —1 are 0, 1,
8§=1,27T=-1,-27=1, -8 = —1 and —1. Sox§:6:—1 gives r3 = 3, 5 or 6.
So there are three solutions:

(r1,22,23) = (2,1,3), (2,1,5) or (2,1,6).

The corresponding elements of Zig5 are found by using the same method as used
in the example given in Lecture 16. For example, the element x € Zp5 such that
x =2 (mod 3), z =1 (mod 5) and x =5 (mod 7) is 26. The other two solutions
of #3 = 41 are 94 (corresponding to (2,1,3)) and 41 (corresponding to (2,1,6)).

Let f(z) = 2% +a12* '+ - -+ap_12+ax be a polynomial over Ly, where p is some
fixed prime number. That is, the coefficients a; are integers modulo p, and we
shall cosider values of x in Z,. If t € Z,, then by division of polynomials one can
find a polynomial g(x) over Z, and an element r € Z, with f(x) = (z —t)g(x)+r.
Putting x = ¢ gives r = f(t): this result is known as the Remainder Theorem. It
follows that = —t is a factor of f(x) if and only if f(¢) = 0 (since clearly = —t is a
factor of f(x) if and only if the remainder r is zero). It follows that a polynomial
equation of degree k over Z,, can have at most k roots. This is proved by induction
on k. In the case k = 1 the equation has the form ax 4+ b = 0 for some nonzero
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a € Z,, and the unique solution is z = —ba~!. (Note that the argument fails at
this point if p is not prime: for example 2z = 4 has two solutions in Zg.) Now
assuming that a polynomial equation of degree k — 1 has at most k — 1 solutions,
and let f(x) = 0 be an equation of degree k and that x = ¢ is one solution. Then
f(x) = (x — t)g(z) where g(x) has degree k — 1, and if u # t is another solution
of f(x) = 0 then v must be a solution of g(z) = 0. (Note that this step also fails
when p is not prime.) Since g(x) = 0 has at most k — 1 solutions, f(z) = 0 has at
most k solutions.

*Proposition: In Z,, where p is prime, 2P~ ' -1 = (z —1)(z —2) - - - (z — (p—1)).

Note that looking at the constant term is this we recover Wilson’s Theorem:
(p—1)!'= —1 (mod p) when p is prime.

Our next objective is to establish the existence of primitive roots modulo p when-
ever p is prime. The first step is as follows.

*Proposition: Let p be prime and ¢ any prime divisor of p—1. Let p—1 = ¢"K
where K is not divisible by ¢. Then there is some integer ¢ whose order modulo p
is q".

The proof goes as follows. By the Euler-Fermat Theorem, since ¢(p) = p — 1, for
all integers t not divisible by p we have (t%)?" = tK¢" = t»=1 =1 (mod p). Tt
follows that ordp(tK ) is a divisor of ¢". Note that the divisors of ¢" are precisely
the powers ¢° of ¢, from i = 0 to i = n. Apart from ¢" itself these are all divisors
of ¢"~1. So if ord,(t¥) # ¢" then (tK)qTH1 = 1 (mod p). So if there is no t
such that ord, () = ¢" then every nonzero t € Z, satisfies tKa"™" = 1. But this
means that every nonzero t € Z,, is a root of the polynomial equation zF—1=0,
where k = Kq¢"~!. So this equation has p — 1 roots. But its degree k is less than
p—1,since k = Kq¢" ! < Kq" = p—1, and so it cannot have as many as p — 1
roots. So for some t the order of ¢t is ¢", and this proves the result.



