
Week 9 Summary

Lecture 17

Let n1, n2, . . . , nk be positive integers. The direct sum of Zn1 , Zn2 . . . , Znk
is

defined to be the set of all k-tuples (a1, a2, . . . , ak) such that ai ∈ Zni
for each i.

We use “⊕” to denote direct sum. Thus,

Z3 ⊕ Z5 ⊕ Z7 = { (a, b, c) | a ∈ Z3, b ∈ Z5, c ∈ Z7 }.

We can define addition and multiplication for k-tuples componentwise. Thus in
Z3 ⊕ Z5 ⊕ Z7 we have

(2, 4, 3) + (2, 3, 6) = (4, 7, 9) = (1, 2, 2)
and

(2, 4, 3)(2, 3, 6) = (4, 12, 18) = (1, 2, 4).

Since 3, 5 and 7 are divisors of 105 there are homomorphisms from Z105 to Z3, Z5

and Z7, as explained in Lecture 16. If we call these f , g and h (respectively) then
we can combine them into a homomorphism from Z105 to Z3 ⊕ Z5 ⊕ Z7 given by
the rule

a 7→ (f(a), g(a), h(a))

for all a ∈ Z105. Thus, for example,

56 7→ (56, 56, 56) = (2, 1, 0)

(since 56 = 2 in Z3, and so on). The Chinese Remainder Theorem tells us that this
mapping is a one to one correspondence between between Z105 and Z3 ⊕Z5 ⊕Z7,
since for each triples (a, b, c) in Z3 ⊕Z5 ⊕Z7 there is a unique x ∈ Z105 such that
x ≡ a (mod 3), x ≡ b (mod 5) and x ≡ c (mod 7). We can, for example, find
the element of Z105 that maps to (1, 4, 3) by solving the simultaneous congruences
x ≡ 1 (mod 3), x ≡ 4 (mod 5) and x ≡ 3 (mod 7) using the method given in
Lecture 15. The solution is 94.
A homomorphism that is a one to one correspondence is called an isomorphism.
The Chinese Remainder Theorem can be restated as follows: if m1, m2, . . . , mk

are pairwise coprime then there is an isomorphism

Zm1m2···mk
−→ Zm1 ⊕ Zm2 ⊕ . . .⊕ Zmk

given by a 7→ (a1, a2, . . . , ak) (for all a), where a ≡ ai (mod mi) for each i.
We say that Zm1m2···mk

and Zm1 ⊕ Zm2 ⊕ . . .⊕ Zmk
are isomorphic.

In the Chinese Remainder Theorem isomorphism, the element of the direct sum
Zm1⊕Zm2⊕ . . .⊕Zmk

corresponding to 1 ∈ Zm1m2···mk
is the k-tuple (1, 1, . . . , 1).

So if a ∈ Zm1m2···mk
corresponds to (a1, a2, . . . , ak) ∈ Zm1 ⊕Zm2 ⊕ . . .⊕Zmk

then
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a has an inverse in Zm1m2···mk
if and only if ai has an inverse in Zmi for each i.

This yields the following Proposition.

*Proposition: If m1, m2, . . . mk are pairwise coprime positive integers then
ϕ(m1m2 · · ·mk) = ϕ(m1)ϕ(m2) · · ·ϕ(mk).

The proof consists of recalling that the number of invertible elements of Zm is
ϕ(m), and hence the number of k-tuples (a1, a2, . . . , ak) ∈ Zm1 ⊕Zm2 ⊕ . . .⊕Zmk

such that each ai is invertible is ϕ(m1)ϕ(m2) · · ·ϕ(mk).

*Proposition: If p is prime and n ∈ Z
+ then ϕ(pn) = pn − pn−1 = pn(1− 1

p ).

*Proposition: If m is a positive integer then

ϕ(m) = m(1− 1
p1

)(1− 1
p2

) · · · (1− 1
pk

)

where p1, p2, . . . , pk are the distinct prime divisors of m.

For example, ϕ(700) = 700(1− (1/2))(1− (1/5))(1− (1/7)) = 700×4×6
2×5×7 = 240.

Lecture 18

Example: Solve, in Z105, the equation x3 = 41.
By the Chinese Remainder Theorem, each x ∈ Z105 corresponds to a triple
(x1, x2, x3) in Z3⊕Z5⊕Z7. Consequently the problem can be restated as follows:
solve (x3

1, x
3
2, x

3
3) = (41, 41, 41) = (2, 1, 6) in Z3 ⊕ Z5 ⊕ Z7. Now the cubes of the

elements 0, 1 and 2 in Z3 are (respectively) 0, 1 and 8 = 2; so x3
1 = 2 gives x1 = 2.

In Z5 the cubes of 0, 1, 2, 3 = −2 and 4 = −1 are 0, 1, 8 = 3, −8 = 2 and −1 = 4.
So x3

2 = 1 gives x2 = 1. In Z7 the cubes of 0, 1, 2, 3, −3, −2 and −1 are 0, 1,
8 = 1, 27 = −1, −27 = 1, −8 = −1 and −1. So x3

3 = 6 = −1 gives x3 = 3, 5 or 6.
So there are three solutions:

(x1, x2, x3) = (2, 1, 3), (2, 1, 5) or (2, 1, 6).

The corresponding elements of Z105 are found by using the same method as used
in the example given in Lecture 16. For example, the element x ∈ Z105 such that
x ≡ 2 (mod 3), x ≡ 1 (mod 5) and x ≡ 5 (mod 7) is 26. The other two solutions
of x3 = 41 are 94 (corresponding to (2,1,3)) and 41 (corresponding to (2,1,6)).
Let f(x) = xk+a1x

k−1+· · ·+ak−1x+ak be a polynomial over Zp, where p is some
fixed prime number. That is, the coefficients ai are integers modulo p, and we
shall cosider values of x in Zp. If t ∈ Zp then by division of polynomials one can
find a polynomial q(x) over Zp and an element r ∈ Zp with f(x) = (x− t)q(x)+r.
Putting x = t gives r = f(t): this result is known as the Remainder Theorem. It
follows that x− t is a factor of f(x) if and only if f(t) = 0 (since clearly x− t is a
factor of f(x) if and only if the remainder r is zero). It follows that a polynomial
equation of degree k over Zp can have at most k roots. This is proved by induction
on k. In the case k = 1 the equation has the form ax + b = 0 for some nonzero

–2–



a ∈ Zp, and the unique solution is x = −ba−1. (Note that the argument fails at
this point if p is not prime: for example 2x = 4 has two solutions in Z6.) Now
assuming that a polynomial equation of degree k− 1 has at most k− 1 solutions,
and let f(x) = 0 be an equation of degree k and that x = t is one solution. Then
f(x) = (x − t)g(x) where g(x) has degree k − 1, and if u 6= t is another solution
of f(x) = 0 then u must be a solution of g(x) = 0. (Note that this step also fails
when p is not prime.) Since g(x) = 0 has at most k− 1 solutions, f(x) = 0 has at
most k solutions.

*Proposition: In Zp, where p is prime, xp−1−1 = (x−1)(x−2) · · · (x− (p−1)).

Note that looking at the constant term is this we recover Wilson’s Theorem:
(p− 1)! ≡ −1 (mod p) when p is prime.

Our next objective is to establish the existence of primitive roots modulo p when-
ever p is prime. The first step is as follows.

*Proposition: Let p be prime and q any prime divisor of p−1. Let p−1 = qnK
where K is not divisible by q. Then there is some integer t whose order modulo p
is qn.

The proof goes as follows. By the Euler-Fermat Theorem, since ϕ(p) = p− 1, for
all integers t not divisible by p we have (tK)qn

= tKqn

= tp−1 ≡ 1 (mod p). It
follows that ordp(tK) is a divisor of qn. Note that the divisors of qn are precisely
the powers qi of q, from i = 0 to i = n. Apart from qn itself these are all divisors
of qn−1. So if ordp(tK) 6= qn then (tK)qn−1 ≡ 1 (mod p). So if there is no t

such that ordp(tK) = qn then every nonzero t ∈ Zp satisfies tKqn−1
= 1. But this

means that every nonzero t ∈ Zp is a root of the polynomial equation xk − 1 = 0,
where k = Kqn−1. So this equation has p− 1 roots. But its degree k is less than
p − 1, since k = Kqn−1 < Kqn = p − 1, and so it cannot have as many as p − 1
roots. So for some t the order of tK is qn, and this proves the result.
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