
Week 6 Summary

Lecture 11

We have shown that if a and b are integers such that a2 + b2 is prime then a+ bi
is an irreducible element of Z[i], and we have also shown that that if p is a prime
that is not a sum of two squares then ±p and ±pi are irreducible in Z[i].

*Proposition: Every irreducible element of Z[i] has one or other of these two
forms.

Suppose that (x, y, z) is a basic Pythagorean triple. Any prime that is a divisor of
both x and z is a divisor of z2 − x2 = y2, and hence a divisor of y. But since our
Pythagorean triple (x, y, z) is basic, there is no integer greater than 1 dividing all
three of x, y and z. So gcd(x, z) = 1. Since x is odd and y even it follows that
z is odd. So gcd(4x2, z2) = 1. Now suppose that γ ∈ Z[i] is a gcd of x + iy and
x− iy. Then γ divides (x+ iy) + (x− iy) = 2x. Taking complex conjugates, we
deduce that also γ | 2x. So γγ | (2x)2. That is, N(γ) | 4x2. Also, since γ | (x+ iy)
and γ | (x− iy) it follows that γγ | (x+ iy)(x− iy) = x2 + y2 = z2. So N(γ) | z2,
and therefore N(γ) | gcd(4x2, z2) = 1. Hence γ is a unit: we have shown that
x + iy and x − iy are coprime Gaussian integers. But their product is a square
(since (x+ iy)(x− iy) = z2), and it follows from the unique factorization theorem
for Z[i] that if the product of two coprime Gaussian integers is a square then they
are each squares, up to unit factors. So x+ iy = u1ζ

2
1 and x− iy = u2ζ

2
2 for some

units u1, u2 and some ζ1, ζ2 ∈ Z[i].
Writing ζ1 = a + bi, and noting that u1 must be 1, −1, i or −i, we have
x + iy = ±((a2 − b2) + 2abi) or x + iy = ±(−2ab + (a2 − b2)i). Since x is
odd, we must have the former case rather than the latter. Interchanging a and b
if necessary, we see that x = a2 − b2 and y = 2ab for some integers a and b.

We turn next to an investigation of powers in Zn. When n = 7, for example, the
successive powers of 3 are 3, 2, 6, 4, 5, and 1, repeating in a periodic sequence of
period six. The powers of 2 form a sequence of period three, and the powers of 6
a sequence of period two. It turns out that if gcd(a, n) = 1 then there is always
a positive integer k such that ak ≡ 1 (mod n). The least such k is called the
order of a modulo n, denoted by ordn(a). The sequence of powers of a in Zn has
period ordn(a). One can check easily that ord7(a) is a divisor of six in each case;
this is a special case of a result known as the Fermat-Euler Theorem.

Lecture 12

We adopt the convention that if S is any finite set then |S| denotes the number
of elements of S.
The Euler phi function is the function ϕ:Z+ → Z

+ defined as follows: ϕ(n) is
the number of positive integers a with 1 ≤ a ≤ n and gcd(a, n) = 1. That is,
ϕ(n) =

∣∣{ a ∈ Z | 1 ≤ a ≤ n and gcd(a, n) = 1 }
∣∣.
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Recall that gcd(a, n) = 1 if and only if a has an inverse in Zn. In other words,
gcd(a, n) = 1 if and only if a is a unit in Zn. Denote the set of units of Zn by Z∗n.
The definition of ϕ(n) can then be restated as ϕ(n) = |Z∗n|.
For example, Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}, and so ϕ(15) = 8. Similarly one can
check that ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2, ϕ(5) = 4, ϕ(6) = 2, ϕ(7) = 6,
ϕ(8) = 4, ϕ(9) = 6. There is a formula for ϕ(n) in terms of the prime factorization
of n; we shall come to this later.
*Fermat-Euler Theorem: Let a, n ∈ Z+ with gcd(a, n) = 1. Then aϕ(n) ≡ 1
(mod n). Moreover, ordn(a) is a divisor of ϕ(n).
(The proof can be found in Walters, or indeed any elementary text.)
A primitive root modulo n is an integer a coprime to n having the property that
ordn(a) = ϕ(n). For example, since ord7(3) = 6 = ϕ(7), we see that 3 is a
primitive root modulo 7. When a is a primitive root modulo n, the powers of a
in Zn form a periodic sequence of period ϕ(n). Since all the powers of a lie in
Z
∗
n, which has only ϕ(n) elements altogether, it follows that all elements of Z∗n are

powers of a. For example, the powers of 2 in Z25, from 21 to 220, are as follows:
2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13 and 1. We exhausted
all 20 elements of Z∗25 before reaching the point at which the sequence repeats. So
2 is a primitive root modulo 25.
Primitive roots modulo n do not exist for all values of n. They exist when n is
prime or the square of a prime, or twice a prime, but not otherwise. They are not
easy to find: basically, one just uses trial and error to find them.
Consider the decimal representation of a rational number p/q, where p and q
are coprime positive integers with p < q. As is well known, this has the form
0.a1a2 . . . anan+1an+2 . . . an+r, where the overline notation indicates a repeating
block. The values of n and r for a given decimal expansion of p/q are not unique:
for example, 0.23154 can also be written as 0.231541541. To avoid this, we insist
on choosing n and r to be as small as possible. We then call n and r, respectively,
the lengths of the non-periodic and periodic parts of the decimal expansion.
*Proposition: If q = 2a5bm, where gcd(m, 10) = 1, then the non-periodic part
of the decimal expansion of p/q has length max(a, b), and the periodic part has
length ordm(10). (Note that it is assumed that gcd(p, q) = 1 and 0 < p < q).
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