
Week 2 Summary

Lecture 3

Suppose that r0 and r1 are nonnegative integers, not both zero. Choose the
notation so that r0 ≥ r1. The greatest common divisor d = gcd(r0, r1) can be
found as follows.
If r1 = 0 then the gcd is just r0. (For example, gcd(6, 0) = 6. Remember that 0 is
a multiple of everything!) If r1 > 0 then divide r0 by r1 to get a quotient a1 and
remainder r2. If r2 = 0 then the gcd is r1; otherwise, divide r2 into r1, obtaining
quotient a2 and remainder r3. Continue in this way until a remainder of zero is
obtained. So we get the following setup, where the ri’s and ai’s are integers:

r0 = a1r1 + r2 (0 < r2 < r1)
r1 = a2r2 + r3 (0 < r3 < r2)
r2 = a3r3 + r4 (0 < r4 < r3)

...

rk−2 = ak−1rk−1 + rk (0 < rk < rk−1)
rk−1 = akrk.

Using the proposition from the end of Lecture 2 we see that
gcd(r0, r1) = gcd(r1, r2) = gcd(r2, r3) = · · · = gcd(rk−1, rk) = gcd(rk, 0) = rk.

That is, d (the gcd of r0 and r1) equals rk, the last nonzero remainder obtained
in the above process.
It is always possible to find integers p and q such that pr1 + qr0 = gcd(r0, r1).
One way to do this is by working backwards through the above equations. The
second to last equation gives rk = (−ak−1)rk−1 + rk−2, expressing rk as a linear
combination of rk−1 and rk−2. The equation previous to that expresses rk−1 in
terms of rk−2 and rk−3, and if we substitute this expression for rk−1 into our
expression for rk we get rk expressed in terms of rk−3 and rk−2. But the next
equation back gives a formula for rk−2, and substituting this into the formula for
rk now expresses rk in terms of rk−4 and rk−3. Continuing like this we eventually
get rk expressed in terms of r0 and r1. See the example on pages 26, 27 of Walters’
book.
There is way to do this, using something we call a Magic Table. Given a sequence
of numbers a1, a2, a3, . . . , we define p−1 = 0, p0 = 1 and q−1 = 1, q0 = 0, and
successively compute the numbers pk and qk in the following table

a1 a2 a3 a4 · · ·
0 1 p1 p2 p3 p4 · · ·
1 0 q1 q2 q3 q4 · · ·

using the recurrence relations
pk = akpk−1 + pk−2

qk = akqk−1 + qk−2
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If one constructs this table using the sequence of quotients a1, a2, . . . , ak obtained
in the Euclidean Algorithm calculation of gcd(r0, r1), then it turns out that the
last pair of numbers pk, qk in the table are given by pk = r0/d and qk = r1/d.
The following proposition is easy to prove by induction.

*Proposition: Let a1, a2, a3, . . . be any sequence of numbers, and for all integers
i ≥ −1 let pi and qi be the numbers in the Magic Table, as described above. Then
for all positive integers n,

pnqn+1 − pn+1qn = (−1)n =
{

1 if n is even,
−1 if n is odd;

and
pnqn+2 − pn+2qn = (−1)nan+2.

In particular, if a1, a2, . . . , ak are the quotients from the Euclidean Algorithm
for gcd(r0, r1), then

pk−1
r1

d
− qk−1

r0

d
= pk−1qk − pkqk−1 = (−1)k−1,

and so (−1)k−1pk−1r1 + (−1)kqk−1r0 = d. That is, the Magic Table gives us a
way to find a pair of numbers p and q satisfying pr1 + qr0 = gcd(r0, r1): put
p = (−1)k−1pk−1 and q = (−1)kqk−1.
Example: Does 288 have an inverse in Z377? If so, find it.
Applying the Euclidean Algorithm with r0 = 377 and r1 = 288 gives

377 = 1× 288 + 89
288 = 3× 89 + 21
89 = 4× 21 + 5
21 = 4× 5 + 1
5 = 5× 1

Thus the sequence of quotients ai is 1, 3, 4, 4, 5. Now form the Magic Table.

1 3 4 4 5
0 1 1 4 17 72 377
1 0 1 3 13 55 288

Now 72×288−55×377 = (−1)4 = 1. So 72×288 ≡ 1 (mod 377). So 72 = 288−1

in Z377.
*Proposition: An element a ∈ Zn has an inverse if and only if gcd(a, n) = 1.

Lecture 4

Every real number can be uniquely expressed as the sum of its integer part and
its fractional part, where here “fractional” means between 0 and 1 (including 0
but excluding 1).
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Notation: [x] = integer part of x = largest integer less than or equal to x.
The steps involved in the Euclidean Algorithm for gcd(248, 192) go as follows:

248 = 1× 192 + 56
192 = 3× 56 + 24
56 = 2× 24 + 8
24 = 3× 8.

We can rewrite these as follows:
248
192

= 1 +
56
192

192
56

= 3 +
24
56

56
24

= 2 +
8
24

24
8

= 3.

Putting these equations together gives
248
192

= 1 +
56
192

= 1 +
1

192/56
= 1 +

1
3 + 24

56

= · · ·

and eventually
248
192

= 1 +
1

3 +
1

2 +
1
3

.

Such expressions are called continued fractions.
We clearly need a more compact notation for continued fractions. Hence we make
the following definition. If a1, a2, . . . , ak are any positive numbers, define

[a1, a2, . . . , ak] = a1 +
1

a2 +
1

a3 +
1

...

ak−1 +
1
ak

.

If the ai are positive integers then we call [a1, a2, . . . , ak] a simple continued frac-
tion. The numbers a1, a2, a3, . . . are called the partial quotients, and [a1], [a1, a2],
[a1, a2, a3], etc. the convergents of [a1, a2, . . . , ak].
*Theorem: If a1, a2, . . . , ak is any sequence of positive numbers, and for all i
from −1 to k the numbers pi, qi are computed from the ai’s by means of a Magic
Table, as above, then [a1, a2, . . . , ak] = pk/qk.
It is a fact that if p/q is a convergent of the continued fraction for a number α,
then |α− (p/q)| < (1/q2).
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