Week 2 Summary

Lecture 3

Suppose that ry and r; are nonnegative integers, not both zero. Choose the
notation so that rg > r;. The greatest common divisor d = ged(rg,71) can be
found as follows.

If 71 = 0 then the ged is just rg. (For example, ged(6,0) = 6. Remember that 0 is
a multiple of everything!) If ; > 0 then divide rg by 71 to get a quotient a; and
remainder r5. If ro = 0 then the gcd is r1; otherwise, divide ro into 1, obtaining
quotient as and remainder r3. Continue in this way until a remainder of zero is
obtained. So we get the following setup, where the r;’s and a;’s are integers:

o = a1r1 + 1o (0<T2 <7“1)
71 = Qa9oT2 + T3 (0 <rg < 7“2)
ro = asrs + 14 (0<ry<rs)
Thk—2 = Qkp—1Tk—1 + Tk (0<rK <TR—1)

Tk—1 = QpTL.
Using the proposition from the end of Lecture 2 we see that
ged(rg, 1) = ged(r1,m2) = ged(ra,r3) = -+ = ged(rg—1,r%) = ged(rg, 0) = rg.
That is, d (the ged of 7 and r1) equals 7, the last nonzero remainder obtained
in the above process.
It is always possible to find integers p and ¢ such that pri + qro = ged(ro,71).
One way to do this is by working backwards through the above equations. The
second to last equation gives ry = (—ag—1)rk—1 + Tk—2, expressing ry as a linear
combination of rx_q and rx_o. The equation previous to that expresses ri_1 in
terms of rx_o and r,_3, and if we substitute this expression for rp_; into our
expression for rp we get rp expressed in terms of r,_3 and rp_o. But the next
equation back gives a formula for r;_o, and substituting this into the formula for
rr Now expresses 7 in terms of ry_4 and r;_3. Continuing like this we eventually
get r expressed in terms of rg and 1. See the example on pages 26, 27 of Walters’
book.
There is way to do this, using something we call a Magic Table. Given a sequence
of numbers aq, as, a3, ... , we define p_1 =0, pg =1and g_1 =1, go =0, and
successively compute the numbers p; and g in the following table
ay G2 G3 Q4

0 1 p1 p2 p3s pa

1 0 ¢1 ¢ g3 qa
using the recurrence relations

Pk = QiPr—1 + Pr—2
k. = akqr—1 + qr—2

—1-



If one constructs this table using the sequence of quotients aq, as, ... , ai obtained
in the Euclidean Algorithm calculation of ged(rg,r1), then it turns out that the
last pair of numbers py, g in the table are given by px, = r¢/d and g = r1/d.
The following proposition is easy to prove by induction.

*Proposition: Let aq, as, as, ... be any sequence of numbers, and for all integers
1 > —1 let p; and ¢; be the numbers in the Magic Table, as described above. Then
for all positive integers n,

" 1 if n is even,
Pnlnt1 — Pnii1Gn = (=1)" = { —1 if n is odd;
and
Pndn+2 — Pn+24n = (_1)nan+2'

In particular, if a1, as, ... , ar are the quotients from the Euclidean Algorithm
for ged(rg,71), then

T To _
Phol— — Qb1— = Ph1qk — Prqr—1 = (—1)* 71,

d d
and so (—1)*"pp_1r1 + (=1)*qr_170 = d. That is, the Magic Table gives us a
way to find a pair of numbers p and ¢ satisfying pri 4+ qro = ged(rg,r1): put
p=(=1)F"pr_1 and ¢ = (=1) gz
Example: Does 288 have an inverse in Zs77? If so, find it.
Applying the Euclidean Algorithm with rqg = 377 and r; = 288 gives

377 =1 x 288 + 89
288 =3 x 89+ 21

89 =4x%x21+5
21l =4 x5+1
5=5Hx1

Thus the sequence of quotients a; is 1, 3, 4, 4, 5. Now form the Magic Table.

1 3 4 4 5
11 4 17 72 377
0 1 3 13 55 288

0
1

Now 72 x 288 —55x 377 = (—1)* = 1. So 72x 288 = 1 (mod 377). So 72 = 288~*
in Z377.

*Proposition: An element a € Z,, has an inverse if and only if ged(a,n) = 1.

Lecture 4

Every real number can be uniquely expressed as the sum of its integer part and
its fractional part, where here “fractional” means between 0 and 1 (including 0
but excluding 1).



Notation: [z] = integer part of x = largest integer less than or equal to x.
The steps involved in the Euclidean Algorithm for ged(248,192) go as follows:

248 =1 x 192 + 56
192 =3 x 56 + 24

56 =2 x 24 + 8
24 = 3 x 8.
We can rewrite these as follows:
28 56
192 192
192 54 24
56~ 56
56 94 8
24 7 24
24 5
g =3
Putting these equations together gives
248 56 1 1
2 12T 192/56 N 2
and eventually
248 . 1
i —
192 34 :
94 =
+ 3

Such expressions are called continued fractions.
We clearly need a more compact notation for continued fractions. Hence we make
the following definition. If aq, as, ... , ai are any positive numbers, define

1
la1,a2,...,a5] = a1 + i

as + 1
CL3+

arp—1+ —
ag

If the a; are positive integers then we call [a1, as,. .., ax| a simple continued frac-
tion. The numbers aq, as, as, ... are called the partial quotients, and [a1], [a1, as],
[a1, az,as], etc. the convergents of [aq, as,. .., ak.

*Theorem: If ay, as, ..., a; is any sequence of positive numbers, and for all i
from —1 to k the numbers p;, ¢; are computed from the a;’s by means of a Magic
Table, as above, then [a1,aq, ..., ak] = pr/qx.

It is a fact that if p/q is a convergent of the continued fraction for a number «,

then | — (p/q)| < (1/¢%).



