Week 10 Summary

Lecture 19

The following proposition is proved by exactly the same argument used to prove
the second statement in the Fermat-Euler Theorem (see Lecture 12, Week 6).

*Proposition: Let a, n € ZT, and suppose that ged(a,n) = 1. Let m = ord,(a).
Then a® =1 (mod n) if and only if m|k.

We made use of this in Lecture 18 in the proof of the following result.

*Proposition: Let p be prime and ¢ any prime divisor of p—1. Let p—1 = ¢"K
where K is not divisible by ¢q. Then there is some integer ¢t whose order modulo p
is ¢".

The point is that since (t5)7" = tP~! = 1 (mod p) the preceding proposition tells
us that ord,(t*) is a divisor of ¢" for all nonzero ¢ in Z,. But the only divisor
of ¢ that is not also a divisor of ¢"~! is ¢" itself; so if there is no ¢ such that
ord, (t¥) = ¢" then (tK)qW1 — 1 = 0 for all nonzero t € Z,. This is impossible
since a polynomial equation of degree less than p—1 cannot have p—1 roots in Z,,.

*Theorem: Let p be a prime. There there is an integer ¢ such that ord, () = p—1.
That is, there exists a primitive root modulo p.

If we factorize p — 1 as ¢ ¢4 - - - ¢'~, where the g; are distinct primes, then the

preceding proposition tells us that for each ¢ there exists an element ¢; such that
ord,(t;) = ¢;"". Now in Question 4 of Tutorial 6 it was shown that if ord, (z) = a
and ord, (y) = b and ged(a,b) = 1, then ord, (zy) = ab. By repeated application
of this we deduce that

ordy(t1te - - - t,) = ordy(t1) ord,(t2) - - -ordy(t,) = ¢77¢5? - ¢;" = p — 1,

so that ¢t = tity - - - t,. is a primitive root.

It turns out that a primitive root modulo n exists whenever n is a power of an
odd prime, or twice a power of an odd prime, or when n = 2 or 4, but not in
any other cases. We shall not prove this, although Q. 2 of Tutorial 9 and Q. 2 of
Tutorial 10 should enable the student to see why no primitive root can exist for
numbers n that are divisible by two distinct odd primes.

Remember that a primitive root modulo n (by definition) is a an integer ¢ such

that ord,,(t) = ¢(n). And p(n) = n<m> <p2—_1> (mp_—1>_ So, for example, a
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primitive root modulo 50 is an integer ¢ with ordso(t) = ¢(50) = 50 x 3 x 2 = 20,
The powers of t then give all 20 elements of Zsy that are coprime to 50.
It turns out to be quite easy, given a primitive root modulo an odd prime p, to
construct primitive roots modulo higher powers of p. We shall not go into the
details of this, but content ourselves with one example. It is easily checked that
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2 is a primitive root modulo 11. Suppose we now wish to find a primitive root
modulo 112. It seems reasonable that a primitive root modulo 112 will also be
a primitive root modulo 11; so we look amongst the integers mod 112 that are
congruent to 2 (mod 11). This gives us 11 possible candidates: 2, 13, 24, 35, 46,
57, 68, 79, 90, 101 and 112. If ¢ is any one of these, and if m = ordjs;(¢) then
t™ = 1 (mod 11?), which certainly implies that t” = 1 (mod 11). But ¢t = 2
(mod 11); so 2™ =1 (mod 11), and so ord;;(2) is a divisor of m. So 10|m. But
the Fermat-Euler Theorem also tells us that ord;o; (¢) is a divisor of ¢(121) = 110,
and since the only multiples of 10 that are divisors of 110 are 10 and 110, it follows
for each of our 11 candidates ¢ that ordjs;(t) is either 10 or 110. It turns out—
and this is a particular instance of a general fact—that all but one of them have
order 110. Only one of the candidates fails to be a primitive root modulo 121.
In particular, it is easily verified that 2 is a primitive root: 2!° = 1024 = 56 # 1
(mod 121); so ordy21(2) # 10, and therefore ordis1(2) = 110, as required.

Our next topic is the inverstigation of quadratic residues modulo p, where p is an
odd prime number. Quadratic residue is the traditional term in number theory
for elements of Z; that have square roots in Z;. Thus the set of quadratic residues
modulo p is the set

Sp:{x2|x€Z;}:{t€Z;|t:a2 for some a € Zy }.
The elements of the set
N, = {t € Z | 2* =t has no solution z € Z7 }

are called quadratic non-residues modulo p.

For example, modulo 7 the quadratic residues are 1, 2 and 4, while the quadratic
residues are 3, 5 and 6. Since every nonzero element that has a square root has
exactly two square roots, the number of elements with square roots must be half
the total number of elements, or (p — 1)/2. If we write the elements of Z, as
—(p-1)/2,—(p—3)/2,...,-2,-1,0,1,2, ..., (p—3)/2, (p—1)/2 then we see
that the distinct quadratic residues are precisely 12, 22, ..., ((p — 1)/2)?, since
(—i)? is equal to i2.



