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Assignment 1

1. Let v1, v2, . . . , vn be a sequence of n elements in an n-dimensional vector
space V . Using any results proved in the textbook, excluding Proposition 4.12,
prove the following:

(i) if v1, v2, . . . , vn span V then they necessarily form a basis of V ;

(ii) if v1, v2, . . . , vn are linearly independent then they necessarily form a
basis of V .

Solution.

We are told that V is a vector space of dimension n; so, by Definition 3.19,
it has a basis consisting of n elements. In other words, there exists a se-
quence of elements w1, w2, . . . , wn in V that are linearly independent and
span V . Furthermore, by Proposition 4.5, any other basis of V will also have
n elements.

(i) Suppose that v1, v2, . . . , vn span V . There are several alternative ways
to use results from the book to prove that they form a basis. Probably
the two easiest ways are as follows.

Suppose that some proper subsequence of v1, v2, . . . , vn spans V . This
subsequence will have at most n−1 elements. So in V there is a spanning
sequence with at most n−1 elements and a linearly independent sequence
(namely, w1, w2, . . . , wn) with n elements. This contradicts Theorem
4.14, which says that the number of terms in any linearly independent
sequence is less than or equal to the number in any spanning sequence.
So no proper subsequence of v1, v2, . . . , vn spans V . It follows from
Proposition 4.7 that v1, v2, . . . , vn is a basis.

It is even shorter to use Proposition 4.9. This tells us that some sub-
sequence of v1, v2, . . . , vn is a basis of V . But any basis of V must
have n elements, and the only subsequence of v1, v2, . . . , vn that has n
elements is v1, v2, . . . , vn itself. So v1, v2, . . . , vn is a basis.

(ii) Suppose that v1, v2, . . . , vn are linearly independent. Again, there are
two alternative short ways of proving that they form a basis.

Suppose that v1, v2, . . . , vn is a proper subsequence of some other lin-
early independent sequence. This other linearly independent sequence
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then must have at least n + 1 elements. So in V there is a indepen-
dent sequence with at least n + 1 elements and a spanning (namely,
w1, w2, . . . , wn) with n elements. This contradicts Theorem 4.14. So
v1, v2, . . . , vn is not a proper subsequence of any other linearly indepen-
dent sequence, and it follows from Proposition 4.8 that v1, v2, . . . , vn

is a basis.
Using Proposition 4.10 is even shorter. It tells us that v1, v2, . . . , vn

is a subsequence of some basis v1, v2, . . . , vd, where d ≥ n. But since
every basis has exactly n elements, we must have d = n, and so the basis
v1, v2, . . . , vd coincides with the original sequence v1, v2, . . . , vn.

2. Let A be an n×n matrix over the field F . Using any of the results from Chap-
ters 1 to 4 of the textbook, prove that the following conditions are equivalent:

(a) CS(A) = Fn;
(b) RN(A) = {0

˜
};

(c) A has an inverse.

Solution.

Note first that Fn is an n-dimensional vector space over F . Indeed, the vectors

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , e3 =


0
0
1
...
0

 , . . . , en =


0
0
0
...
1

 (∗)

form a basis for Fn. This is known as the standard basis of Fn; it is mentioned
in the book (see 4.1.3 and #1 on p. 95) and was described in lectures. So
for this question it is certainly legitimate to use without proof the fact that
Fn has dimension n. Nevertheless, since I cannot see it explicitly proved
anywhere in the book, here is a proof that the standard basis really is a basis.
Suppose that λ1, λ2, . . . , λn ∈ F satisfy

λ1


1
0
0
...
0

 + λ2


0
1
0
...
0

 + λ3


0
0
1
...
0

 + · · ·+ λn


0
0
0
...
1

 =


0
0
0
...
0

 .

Then 
λ1

λ2

λ3
...

λn

 =


0
0
0
...
0


and so λ1 = λ2 = · · · = λn = 0. Hence the vectors in (∗) are linearly
independent.
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On the other hand, since every vector in Fn has the form
λ1

λ2

λ3
...

λn

 = λ1


1
0
0
...
0

 + λ2


0
1
0
...
0

 + λ3


0
0
1
...
0

 + · · ·+ λn


0
0
0
...
1


for some scalars λ1, λ2, . . . , λn, we see also that the vectors (∗) span Fn. So
they form a basis.
We prove first that (a) implies (c). It is shown on p. 73 of the book that the
set {Ax | x ∈ Fn } is the set of all linear combinations of the columns of A.
That is,

CS(A) = {Ax | x ∈ Fn }.

Assume now that (a) holds: CS(A) = Fn. So {Ax | x ∈ Fn } = Fn, and
hence for every v ∈ Fn there is an x ∈ Fn such that Ax = v. In particular,
for each i from 1 to n there exists a vector xi ∈ Fn such that Axi = ei, where
ei is the i-th vector in the standard basis. Now let B be the n × n matrix
whose columns are x1, x2, . . . , xn. That is

B =
(
x1 x2 · · · xn

)
.

Then we have

AB =
(
Ax1 Ax2 · · · Axn

)
=

(
e1 e2 · · · en

)
= I

the identity matrix. By Theorem 2.9, B is the inverse of A. Hence (c) holds.
We now prove that (c) implies (b). Assume that (c) holds. Then there is a
n× n matrix B such that BA = I. By Definition 7.24,

RN(A) = {x ∈ Fn | AX = 0 }.

Let v be any vector in RN(A). Then Av = 0, and now

v = Iv = (BA)v = B(Av) = B0 = 0.

So we have shown that the only vector that can possibly be in RN(A) is the
zero vector. That is, RN(A) ⊆ {0}. The reverse inclusion is trivial; it is clear
that 0 ∈ RN(A) (since A0 = 0). So RN(A) = {0}, and so (b) holds.
Finally, we prove that (b) implies (a). Assume (b) holds, so that RN(A) = {0},
and let v1, v2, . . . , vn be the columns of A. We show that v1, v2, . . . , vn are
linearly independent. Suppose that

λ1v1 + λ2v2 + · · ·+ λnvn = 0 ($)
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for some λi ∈ F . Then

A


λ1

λ2
...

λn

 =
(
v1 v2 · · · vn

)  λ1
λ2
...

λn

 =
n∑

i=1

λivi = 0

showing that the column vector whose i-th component is λi is in RN(A). So
this vector must be the zero vector, since the zero vector is the only element
of RN(A). So

λ1 = λ2 = · · · = λn = 0,

and since we have shown that this is the only solution of ($) it follows that
v1, v2, . . . , vn are linearly independent. But as we have seen in Question 1,
n linearly independent vectors in an n-dimensional space must form a basis
for the space. In particular, v1, v2, . . . , vn span Fn. That is, CS(A) = Fn.
So (a) holds, as required.
From these three proofs we see that each of (a), (b) and (c) imply both the
others. So they are equivalent, as claimed.

3. Suppose that V is a vector space over R and θ is a linear transformation from
the space V to itself, and suppose that u, v, w ∈ V are nonzero vectors in V
such that θ(u) = u, θ(v) = 2v and θ(w) = −w. Prove that u, v and w are
linearly independent. (Comment: a generalization of this result is given in
Theorem 9.6 of the textbook.)

Solution.

Assume that λ, µ, ν ∈ R satisfy

λu + µv + νw = 0. (1)

Since θ is linear we know that θ(0) = 0 (see the proof of 3.9), and so it follows
that θ(λu + µv + νw) = 0. By linearity of θ and the given facts θ(u) = u,
θ(v) = 2v and θ(w) = −w this becomes

λu + 2µv − νw = 0. (2)

Apply the same trick again; that is, apply θ to both sides of (2). this gives

λu + 4µv + νw = 0. (3)

Subtracting equation (1) from equation (3) gives 3µv = 0, and by Proposition
3.4 it follows that either 3µ = 0 or v = 0. But we are given that v is nonzero;
so we must have µ = 0. Now adding equations (1) and (2) gives 2λu = 0, and
since u 6= 0 we get λ = 0. Equation (1) by now reduces just to νw = 0, and
since w 6= 0 we have ν = 0.
We have shown that the only solution to (1) is λ = µ = ν = 0; that is, u, v
and w are linearly independent.


