
WEEK 02

Projection onto a line through the origin
Suppose that a

˜
∈ Rn is a nonzero vector, and let W be the one-dimensional subspace

spanned by a
˜
. Thus W consists of all scalar multiples of a

˜
. Geometrically, it is a straight

line through the origin in n-dimensional space. If v
˜
∈ Rn is arbitrary then, as we saw in

the first week, the projection of v
˜

onto W is the vector p
˜

= Ax
˜
, where x

˜
is the unique

solution of the linear system (AT A)x
˜

= AT v
˜
. Here A is any matrix whose columns form

a basis for W . In the case we are currently considering, A will have only one column,
since dim W = 1; indeed, we may take A = a

˜
(an n× 1 matrix). Now, substituting in to

the formula, we find that
p
˜

= a
˜
(a
˜

T a
˜
)−1(a

˜
T v
˜
) =

a · v
a · a

a
˜
,

since the product of a row vector by a column vector can be rewritten in terms of the dot
product.

Geometrically, p
˜

is that scalar multiple of a
˜

such that v
˜
− p

˜
is perpendicular to W :

Wp
˜

a
˜

v
˜

O (origin)

It is easy to check that p
˜

depends on the direction of a
˜

but not on its length: indeed,
‖p
˜
‖ = ‖v

˜
‖ cos θ, where θ is the angle between a

˜
and p

˜
.

For example, let a
˜

= (1,−1, 1)T , v
˜

= (0, 1, 2)T . Then a
˜
· v
˜

= 0 − 1 + 2 = 1 and
a
˜
· a
˜

= 12 + (−1)2 + 12 = 3. So the projection of v
˜

onto Span(V ) is

p
˜

=
1
3
a
˜

=
1
3

 1
−1
1

 =

 1/3
−1/3
1/3

 .

“Least Squares” approximations
The theory we have been discussing has an important application in the analysis of

experimental data, which we now describe.
Suppose that we have set of points {(x1, y1), (x2, y2), . . . , (xk, yk)} in the (x, y)-plane,

and we wish to find the straight line of best fit. That is, we want to find a and b so that
the line y = a+ bx goes as close as is possible to the points (x1, y1), (x2, y2), . . . , (xk, yk).

The solution to this problem, of course, depends on how one defines closeness. For
this purpose we consider the sum of the squares of the vertical distances from the data
points to the line. If L is the line y = a + bx, then the point on L with x-coordinate xi

is (xi, a + bxi), and this is the point on L that lies vertically above or below the data
point (xi, yi). The distance between these two points is |(a + bxi)− yi|, and the quantity

S =
(
(a + bx1)− y1

)2 +
(
(a + bx2)− y2

)2 + · · ·+
(
(a + bxk)− yk

)2

is the sum of the squares of the vertical distances from the data points to L. Clearly
S ≥ 0, and S can only be zero if a + bxi = yi for all i, which would mean that all the
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data points lie on L. Our aim is to vary L so as to minimize S; the line for which S is
minimal is called the line of best fit.

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

d1

d2

d3

d4

d5di = |(a + bxi) − yi|
S = d2

1 + d2
2 + d2

3 + d2
4 + d2

5

y = a + bx

The observation that relates this problem to vector spaces is that S can be interpreted
as the square of the length of a certain vector z

˜
in Rk. Specifically S = ‖z

˜
‖2, where

z
˜

=


(a + bx1)− y1

(a + bx2)− y2

...
(a + bxk)− yk



= a


1
1
...
1

 + b


x1

x2
...

xk

−


y1

y2
...

yk

 ,

and our task is to find a and b that minimize ‖z
˜
‖. (Minimizing ‖z

˜
‖ is of course equivalent

to minimizing ‖z
˜
‖2.) In other words, we must find a and b such that

p
˜

= a


1
1
...
1

 + b


x1

x2
...

xk


is as close as possible to y

˜
= (y1, y2, . . . , yk)T . If we define W to be the subspace of

Rk spanned by the two column vectors (1, 1, . . . , 1)T and (x1, x2, . . . , xk)T then p
˜

is the
element of W that is closest to y

˜
; that is, p

˜
is the projection of y

˜
onto W .† So, by the

formulas we have already derived,

(
a
b

)
= (AT A)−1AT


y1

y2
...

yk


† If the xi are all equal then dim W = 1, and the formulas below do not apply. However, in

this case all the data points lie on a vertical line, and this is the line of best fit.
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where A is the matrix whose two columns are (1, 1, . . . , 1)T and (x1, x2, . . . , xk)T . (For
this problem we do not need to calculate the vector p

˜
, since the coefficients a and b are

what we want.)
As an example, let us find the line of best fit for the four data points (0, 0), (1, 1),

(3, 2), (4, 5). In the notation used above,

AT A =
(

1 1 1 1
0 1 3 4

) 
1 0
1 1
1 3
1 4

 =
(

4 8
8 26

)
,

and we have to find a and b satisfying

(
4 8
8 26

) (
a
b

)
= AT


0
1
2
5

 =
(

1 1 1 1
0 1 3 4

) 
0
1
2
5

 =
(

8
27

)
.

Let us use the row operations technique to solve this system:(
4 8 8
8 26 27

)
R1:=

1
4 R1−−−−−→

(
1 2 2
8 26 27

)
R2:=R2−8R1−−−−−−−→

(
1 2 2
0 10 11

)
R2:=0.1R2−−−−−−→

(
1 2 2
0 1 1.1

)
R1:=R1−2R2−−−−−−−→

(
1 0 −0.2
0 1 1.1

)
.

So the equation of the line of best fit is y = −0.2 + 1.1 x.

Best fitting parabolas, cubic curves, etc.

Given points (x1, y1), (x2, y2), . . . , (xk, yk), we may want to find the best fitting
polynomial equation of some specified degree. Suppose that the degree is n, so that
the equation we want to find has the form y = a0 + a1x + a2x

2 + · · · + anxn. As in
the straight line case, we use the sum of the squares of the vertical distances from the
data points to the curve as a measure of how well the curve fits the data. The vertical
distance from the point (xi, yi) to the curve is the distance between the points (xi, yi) and
(xi, a0+a1xi +a2x

2
i + · · ·+anxn

i ), and this is given by |(a0+a1xi +a2x
2
i + · · ·+anxn

i )−yi|.
So the quantity to be minimized is

S =
k∑

i=1

(
(a0 + a1xi + a2x

2
i + · · ·+ anxn

i )− yi)2,

which is the square of the length of the vector

z
˜

=


(a0 + a1x1 + a2x

2
1 + · · ·+ anxn

1 )− yi

(a0 + a1x2 + a2x
2
2 + · · ·+ anxn

2 )− yi

...
(a0 + a1xk + a2x

2
k + · · ·+ anxn

k )− yk



= a0


1
1
...
1

 + a1


x1

x2
...

xk

 + a2


x2

1

x2
2
...

x2
k

 + · · ·+ an


xn

1

xn
2
...

xn
k

−


y1

y2
...

yk

 .
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We see immediately that the length of z
˜

is minimal when

p
˜

= a0


1
1
...
1

 + a1


x1

x2
...

xk

 + a2


x2

1

x2
2
...

x2
k

 + · · ·+ an


xn

1

xn
2
...

xn
k


is the projection of (y1, y2, . . . , yk)T onto the space W spanned by the vectors

1
1
...
1

 ,


x1

x2
...

xk

 ,


x2

1

x2
2
...

x2
k

 , . . . ,


xn

1

xn
2
...

xn
k

 .

It can be shown that, provided there are at least n + 1 distinct xi’s, these vectors are
linearly independent, and therefore constitute a basis for W . We shall assume that this
condition is satisfied.

By the same reasoning that we used in our discussion of the straight line of best fit,
we conclude that

(AT A)


a0

a1
...

an

 = AT


y1

y2
...

ak

 ,

where A is the matrix whose columns constitute the above basis for W . That is,

A =


1 x1 x2

1 . . . xn
1

1 x2 x2
2 . . . xn

2

1 x3 x2
3 . . . xn

3
...

...
...

...
1 xk x2

k . . . xn
k

 .

To illustrate this, let us find the parabola of best fit through the same four points
that we used in our example of the line of best fit: (0, 0), (1, 1), (3, 2), (4, 5). This time
we have

AT A =

 1 1 1 1
0 1 3 4
0 1 9 16




1 0 0
1 1 1
1 3 9
1 4 16

 =

 4 8 26
8 26 92
26 92 338


and so we must solve 4 8 26

8 26 92
26 92 338

  a
b
c

 =

 1 1 1 1
0 1 3 4
0 1 9 16




0
1
2
5

 =

 8
27
99

 .

To save ourselves some calculation, we can get MAGMA to do this. Of course, we first have
to change it into a row vector problem by taking transposes. The equation becomes

( a b c )

 4 8 26
8 26 92
26 92 338

 = ( 8 27 99 ) .
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Now we can use MAGMA’s Solution function:

> R := RealField();
> V := VectorSpace(R,3);
> M := KMatrixSpace(R,3,3);
> v := V![8,27,99];
> ATA := M![4,8,26,8,26,92,26,92,338];
> Solution(ATA,v);
> (3/10 -7/30 1/3)

We conclude that the equation of the parabola of best fit is y = 3
10 −

7
30x + 1

3x2.

Orthonormal bases

Definition. A set {v
˜
1.v

˜
2, . . . , v

˜
k} is called an orthogonal set if vi · vj = 0 whenever i 6= j.

In other words, a set of vectors is said to be orthogonal if distinct elements of the set
are perpendicular to one another. For example,

i
˜

=

 1
0
0

 , j
˜

=

 0
1
0

 , k
˜

=

 0
0
1


form an orthogonal set of vectors in R3.

Definition. A set {v
˜
1, v

˜
2, . . . , v

˜
k} is called an orthonormal set if it is orthogonal and

vi · vi = 1 for all i.

The set {i
˜
, j
˜
, k
˜
} is also an orthonormal set in R3. The following three vectors form

an orthogonal set that is not orthonormal: 1
1
0

 ,

 1
−1
0

 ,

 0
0
1

 .

Whenever we have an orthogonal set of vectors that are all nonzero, we can produce
an orthonormal set of vectors by a process known as normalization, which consists of
replacing each v

˜
in the set by (1/‖v

˜
‖)v

˜
. In other words, divide each vector by its own

length: this produces a scalar multiple of the vector having length 1. In the example
above, the orthonormal set obtained in this way is 1/

√
2

1/
√

2
0

 ,

 1/
√

2
−1/

√
2

0

 ,

 0
0
1

 .

The following theorem states one of the key facts about orthogonal sets.

Theorem. If {v
˜
1, v

˜
2, . . . , v

˜
k} is an orthogonal set of nonzero vectors in Rn then it is also

a linearly independent set.
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Proof. Suppose that λ1, λ2, . . . , λk are scalars such that λ1v
˜
1 + λ2v

˜
2 + · · ·+ λkv

˜
k = 0

˜
.

Then, for any i,

0 = 0
˜
· v
˜

i = (λ1v
˜
1 + λ2v

˜
2 + · · ·+ λkv

˜
k) · v

˜
i

= λ1(v
˜
1 · v

˜
i) + λ2(v

˜
2 · v

˜
i) + · · ·+ λk(v

˜
k · v

˜
i)

= λi(v
˜

i · v
˜

i),

all the other terms being zero since v
˜

j · v
˜

i = 0 when j 6= i. Now since we have as-
sumed that v

˜
i 6= 0

˜
it follows that v

˜
i · v

˜
i = ‖v

˜
i‖2 6= 0, and so the above equation shows

that λi = 0. Furthermore, i was arbitrary, and so we have shown that the only solution of∑n
i=1 λiv

˜
i = 0

˜
is given by λi = 0 for all i. That is, v

˜
1, v

˜
2, . . . , v

˜
k are linearly independent,

as claimed. �

By this theorem, an orthogonal set of nonzero vectors necessarily constitutes a basis
for the subspace it spans. Normalization will then yield an orthonormal basis for this
subspace.

Projections using orthogonal bases

Orthogonal bases are important because many formulas become much simpler to
work with when expressed in terms of orthogonal bases. The formula for the projection
onto a subspace is a case in point.

Let A be an n × k matrix. The columns of A form an orthonormal set of vectors if
and only if AT A = I, the identity matrix. This fact is quite straightforward to prove,
as follows. Let v

˜
1, v

˜
2, . . . , v

˜
k be the columns of A. Then v

˜
T
1 , v

˜
T
2 , . . . , v

˜
T
k are the rows

of AT , and, by the way matrix multiplication is defined, the (i, j) entry of AT A is v
˜

T
i v
˜

j ,
the product of the i-th row of AT and the j-th column of A. But the product of a row
vector by a column vector can alternatively be expressed as the dot product of two column
vectors; so in fact we can say that the (i, j) entry of AT A is the dot product of the i-th
and j-th columns of A. The columns of A comprise an orthonormal set if and only if
v
˜

i · v
˜

j is zero for i 6= j and 1 when i = j. Since v
˜

i · v
˜

j is the (i, j)-entry of AT A, this
condition is equivalent to the main-diagonal entries of AT A being 1 and the other entries
being 0, and of course this is the same as saying that AT A = I. So the columns of A form
an orthonormal set if and only if AT A = I, as claimed.

In the course of the above discussion, we showed that if A is a matrix with k columns
v
˜
1, v

˜
2, . . . , v

˜
k, then

AT A =


v
˜
1 · v

˜
1 v

˜
1 · v

˜
2 . . . v

˜
1 · v

˜
k

v
˜
2 · v

˜
1 v

˜
2 · v

˜
2 . . . v

˜
2 · v

˜
k

...
...

...
v
˜

k · v
˜
1 v

˜
k · v

˜
2 . . . v

˜
k · v

˜
k

 . (1)

This result is true for all matrices A, without the assumption that the columns are or-
thonormal. When the columns are orthonormal, the right hand side of Eq. (1) is just the
identity matrix.

Definition. The matrix on the right hand side of Eq. (1) above is called the Gram matrix
of the set of vectors {v

˜
1, v

˜
2, . . . , v

˜
k}.

We turn now to consideration of projections onto a subspace for which we have an
orthogonal basis. First, let us suppose that {a

˜
1, a

˜
2, . . . , a

˜
k} is an orthonormal set of
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vectors in Rn, and let W = Span(a
˜
1, a

˜
2, . . . , a

˜
k). If v

˜
∈ Rn then the projection of v

˜
onto

W is given by
p
˜

= A(AT A)−1AT v
˜

= AAT v
˜

(2)

(since AT A = I). Note that although we know that AT A = I, we have no simple formula
for AAT . To evaluate the right hand side of Eq. (2) we bracket it as A(AT v

˜
), and observe

that

AT v
˜

=


a
˜

T
1

a
˜

T
2
...

a
˜

T
k

 v
˜

=


a
˜

T
1 v
˜a

˜
T
2 v
˜...

a
˜

T
k v
˜

 =


a
˜
1 · v

˜a
˜
1 · v

˜...
a
˜
1 · v

˜

 .

So we find that

p
˜

= A


a
˜
1 · v

˜a
˜
2 · v

˜...
a
˜

k · v
˜

 = ( a
˜
1 a

˜
2 . . . a

˜
k )


a
˜
1 · v

˜a
˜
2 · v

˜...
a
˜

k · v
˜


= (a

˜
1 · v

˜
)a
˜
1 + (a

˜
2 · v

˜
)a
˜
2 + · · ·+ (a

˜
k · v

˜
)a
˜

k.

Comparing this with the formula that we obtained earlier for the projection of v
˜

onto a
1-dimensional subspace, we see that in fact p

˜
is the sum of the projections of v

˜
on to the

one-dimensional subspaces spanned by the a
˜

i, for each i from 1 to k. (The projection of
v
˜

onto the one-dimensional space Span(a
˜

i) is a
˜

i·v
˜a

˜
i·a
˜

i
a
˜

i = (a
˜

i · v)a
˜

i, since a
˜

i · a
˜

i = 1.)
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