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1. Four people, whose names are 1, 2, 3 and 4, decide to play a two-against-two
partnership game. There are three ways to choose the partnerships: 4 and 1
versus 2 and 3, or 4 and 2 versus 1 and 3, or 4 and 3 versus 1 and 2. Call
these three possibilities P1, P2 and P3 respectively. (Thus Pi means that 4 is
teamed with i.)

(i) Work out the effect of the permutation σ = (1, 4, 3, 2) on P1, P2 and
P3. (For example, σ changes P1 from 4&1 versus 2&3 to 4σ&1σ versus
2σ&3σ, which is 3&4 versus 1&2 – i.e. P3.) Thus check that the per-
mutation (1, 4, 3, 2) of the set {1, 2, 3, 4} gives rise to the permutation
(P1, P3) of the set {P1, P2, P3}.

(ii) For each permutation τ of {1, 2, 3, 4} let φ(τ) be the corresponding per-
mutation of {P1, P2, P3}. Calculate φ(τ) for all 24 permutations τ in
Sym(4).

(iii) Note that (1, 4, 3, 2)(1, 4, 3) = (1, 3, 2, 4). Using the values of φ(τ) that
you found in Part (ii), check that φ((1, 4, 3, 2))φ((1, 4, 3))=φ((1, 3, 2, 4)).
Check that φ(τ)φ(ρ) = φ(τρ) for a few randomly chosen values of
τ, ρ ∈ Sym(4). (Do at least 2 examples.)

(iv) The map φ described above is an example of a group homomorphism;
this means simply that φ preserves multiplication—that is, the equation
φ(τ)φ(ρ) = φ(τρ) holds for all τ and ρ. The kernel of φ is by definition
the set of all τ such that φ(τ) is the identity. Find all the elements τ
that are in the kernel of φ.

(v) In fact, kerφ = {id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. Call this group
K. Calculate all 4 elements of the left coset (1, 2)K, and also calcu-
late all four elements of the right coset K(1, 2). (You will find that
(1, 2)K = K(1, 2), since K is what is known as a normal subgroup
of Sym(4).) Check that φ takes the same value on all 4 elements of
this coset. Can you see why this is true? (Hint: it depends on the fact
that φ is a homomorphism.)

Solution.

The three ways of choosing the partnerships correspond to the three unordered
pairs {A,B} such that A and B are two-element sets whose union is {1, 2, 3, 4}.
Thus we can identify P1 with {{4, 1}, {2, 3}}, P2 with {{4, 2}, {1, 3}} and P3
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with {{4, 3}, {1, 2}}. Now if σ = (1, 4, 3, 2) then

P
φ(σ)
2 = Pσ

2 = {{4, 2}, {1, 3}}σ = {{4σ, 2σ}, {1σ, 3σ}} = {{3, 1}, {4, 2}} = P2

P
φ(σ)
3 = Pσ

3 = {{4, 3}, {1, 2}}σ = {{4σ, 3σ}, {1σ, 2σ}} = {{3, 2}, {4, 1}} = P1

and since also P
φ(σ)
1 = P3 we see that φ(σ) interchanges P1 and P3 and

fixes P2. That is, φ(σ) = (P1, P3). See the lecture notes for week 10 for the
details of two similar calculations. The complete list of vlues of φ is as follows.

φ(id) = id
φ((1, 2)(3, 4)) = id
φ((1, 3)(2, 4)) = id
φ((1, 4)(2, 3)) = id

φ((1, 2, 3)) = (P1, P2, P3)
φ((2, 4, 3)) = (P1, P2, P3)
φ((1, 4, 2)) = (P1, P2, P3)
φ((1, 3, 4)) = (P1, P2, P3)

φ((1, 3, 2)) = (P1, P3, P2)
φ((1, 4, 3)) = (P1, P3, P2)
φ((2, 3, 4)) = (P1, P3, P2)
φ((1, 2, 4)) = (P1, P3, P2)

φ((1, 2)) = (P1, P2)
φ((3, 4)) = (P1, P2)

φ((1, 3, 2, 4)) = (P1, P2)
φ((1, 4, 2, 3)) = (P1, P2)

φ((1, 3)) = (P1, P3)
φ((1, 4, 3, 2)) = (P1, P3)

φ((2, 4)) = (P1, P3)
φ((1, 2, 3, 4)) = (P1, P3)

φ((2, 3)) = (P2, P3)
φ((1, 2, 4, 3)) = (P2, P3)
φ((1, 3, 4, 2)) = (P2, P3)

φ((1, 4)) = (P2, P3)

Let σ = (1, 4, 3, 2) and τ = (1, 4, 3). Then

(1σ)τ = 4τ = 3,

(2σ)τ = 1τ = 4,

(3σ)τ = 2τ = 2,

(4σ)τ = 3τ = 1.

So στ = (1, 3, 2, 4), and (by the table above) φ(στ) = (P1, P2). Also by the
table, φ(σ) = (P1, P3) and φ(τ) = (P1, P3, P2). Now

(Pφ(σ)
1 )φ(τ) = P

φ(τ)
3 = P2

(Pφ(σ)
2 )φ(τ) = P

φ(τ)
2 = P1

(Pφ(σ)
3 )φ(τ) = P

φ(τ)
1 = P3

and thus φ(σ)φ(τ) = (P1, P2) = φ(στ), as claimed.
Here is another example. By the table φ((1, 2)) = φ((3, 4)) = (P1, P2), and so

φ((1, 2))φ((3, 4)) = (P1, P2)(P1, P2) = id.

From the table, φ((1, 2)(3, 4)) = id, and so φ((1, 2))φ((3, 4)) = φ((1, 2)(3, 4)).
Another: φ((2, 3)) = (P2, P3), φ((2, 4)) = (P1, P3), φ((2, 3, 4)) = (P1, P3, P2).
So

φ((2,3))φ((2,4)) = (P2,P3)(P1,P3) = (P1,P3,P2) = φ((2,3,4)) = φ((2,3)(2,4)).

The kernel of φ is by definition the set of all α ∈ Sym(4) such that φ(α) is
the identity. So according to the table above,

ker φ = K = {id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.
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If α ∈ (1, 2)K then α = (1, 2)ρ for some ρ ∈ K, and since φ is a homomor-
phism,

φ(α) = φ((1, 2)ρ) = φ((1, 2))φ(ρ) = φ((1, 2))id = φ((1, 2)).

So all four elements α in the coset (1, 2)K give the same value for φ(α), namely
φ(α) = φ((1, 2)). The same argument shows that φ(α) = φ((1, 2)) for all
α ∈ K(1, 2). From the table we see that φ((1, 2)) = (P1, P2), and there are just
four permutations α such that φ(α) = (P1, P2), namely (1, 2), (3, 4), (1, 4, 2, 3)
and (1, 3, 2, 4). Since (1, 2)K must have the same number of elements as K,
namely four, it follows that (1, 2)K = {(1, 2), (3, 4), (1, 4, 2, 3), (1, 3, 2, 4)}.
And by the same reasoning, K(1, 2) is also this same set. It is straight-
forward to check this by multiplying permutations: for example, one element
of (1, 2)K is (1, 2)((1, 3)(2, 4)), and calculating this we find that it equals
(1, 4, 2, 3).

2. (i) List all the elements of Alt(4), and give the order of each element.
(ii) Verify that

K = {id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

is a subgroup of Alt(4).
(iii) Show that K is the only subgroup of Alt(4) of order 4.

(Hint: What are the possible orders for an element of a group of order 4?)

Solution.

(i) The alternating group, Alt(n), consists of all even permutations in the
symmetric group Sym(n). Cycles with an odd number of terms are
even permutations (see the lecture notes for week 8). In particular,
3-cycles are even. Permutations that are the product of two transpo-
sitions are even (since the product of two odd permutations is even).
And the identity is even. So the following 12 permutations are even:
id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2),
(1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3). If we multiply all 12 of these even
permutations by the odd permutation (1, 2) we get twelve odd permu-
tations. Since Sym(4) has only 4! = 24 elements altogether, the 12
permutations above are the only even permutations in Sym(4). That is,
Alt(4) consists of the elements above.
Recall that the order of an element g is the least positive k with gk

equal to the identity. It takes 3 applications of a 3-cycle to move things
back to where they started. So 3-cycles all have order 3. The identity
has order 1. The remaining elements of Alt(4) are products of disjoint
transpositions, and applying such a permutation twice gives the identity.
So they all have order 2.

(ii) To check by direct calculation that K satisfies (SG1) requires calculating
all 16 products στ with σ, τ ∈ K, and verifying that the answer is
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always in K. The 7 involving the identity are trivial: σ id = σ ∈ K
for all σ ∈ K, and id τ = τ ∈ K for all τ ∈ K. For each of the
three non-identity elements σ ∈ K we find that σ2 = id ∈ K. (For
example ((1, 2)(3, 4))2 = id.) The remaining 6 cases are very similar to
one another, and in fact it turns out that the product (in either order)
of two distinct non-identity elements of K gives the third non-identity
element. For example,

((1, 2)(3, 4))((1, 3)(2, 4)) = ((1, 3)(2, 4))((1, 2)(3, 4)) = (1, 4)(2, 3).

It follows from these remarks that each element of K is its own inverse;
so K satisfies (SG3). We are given that id ∈ K; so (SG2) holds also.

(iii) An element of order k in a group G generates a cyclic subgroup of G of
order k, and so by Lagrange’s Theorem k must be a divisor of #G. So an
element in a group of order 4 must have order 1, 2 or 4. In Alt(4) there
are only 4 elements that have order 1, 2 or 4, since the eight 3-cycles
all have order 3. So a subgroup of Alt(4) of order 4 cannot contain any
elements other than these four. Since it has to have four elements–since
its order is four—it consists exactly of these elements. Thus K is the
only four-element subset of Alt(4) that can possibly be a subgroup.
This enables us to deduce that K must be a subgroup without directly
checking closure under multiplication. Since #Alt(4) = 12, Sylow’s
Theorem tells us that Alt(4) has a subgroup of order 4. So K is this
subgroup.

3. Let A = (aij) be a 4 × 4 matrix. By using the first row expansion formula
for the determinant, show that detA is the sum of 24 terms of the form
±a1ia2ja3ka4l, where i, j, k, l are 1, 2, 3, 4 in some order. For each such term
there is a permutation σ defined by 1σ = i, 2σ = j, 3σ = k, 4σ = l, and
all 24 permutations of {1, 2, 3, 4} arise like this. Check that the terms with
coefficient −1 correspond to odd permutations, while terms with coefficient
+1 correspond to even permutations.

Solution.

The determinant of A is equal to

a11

∣∣∣∣∣∣
a22 a23 a24

a32 a33 a34

a42 a43 a44

∣∣∣∣∣∣−a12

∣∣∣∣∣∣
a21 a23 a24

a31 a33 a34

a41 a43 a44

∣∣∣∣∣∣+a13

∣∣∣∣∣∣
a21 a22 a24

a31 a32 a34

a41 a42 a44

∣∣∣∣∣∣+a14

∣∣∣∣∣∣
a21 a22 a23

a31 a32 a33

a41 a42 a43

∣∣∣∣∣∣
The formula for a 3× 3 determinant is∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣ e f
h i

∣∣∣∣− b

∣∣∣∣ d f
g i

∣∣∣∣ + c

∣∣∣∣ d e
g e

∣∣∣∣
= aei− afh− bdi + bfg + cde− ceg
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and so det A is as follows:

a11(a22a33a44 − a22a34a43 − a23a32a44 + a23a34a42 + a24a32a43 − a24a33a42)
−a12(a21a33a44 − a21a34a43 − a23a31a44 + a23a34a41 + a24a31a43 − a24a33a41)
+a13(a21a32a44 − a21a34a42 − a22a31a44 + a22a34a41 + a24a31a42 − a24a32a41)
−a14(a21a32a43 − a21a33a42 − a22a31a43 + a22a33a41 + a23a31a42 − a23a32a41)

Expanding the first line gives 6 terms ±a1ia2ja3ka4l, where i = 1 and j, k
and l are 2, 3 and 4 in some order. Similarly, the 2nd line gives 6 terms
with i = 2 and j, k, l equal to 1, 3 and 4 in some order, the third line gives
6 terms with i = 3 and {j, k, l} = {1, 2, 4} and the last line gives 6 terms
with i = 4 and {j, k, l} = {1, 2, 3}. Each of the 24 terms a1ia2ja3ka4l can
be written as a11σa24σa34σa44σ where σ is a permutation of {1, 2, 3, 4}. For
example, a12a24a31a43 corresponds to the permutation σ given by 1σ = 2,
2σ = 4, 3σ = 1 and 4σ = 3. That is, σ takes 1 to 2, 2 to 4, 4 to 3 and 3 to 1,
which means that σ = (1, 2, 4, 3). The following table lists the permutations
associated with the 24 terms in the order in which the terms appear in the
expression above:

id (3, 4) (2, 3) (2, 3, 4) (2, 4, 3) (2, 4)
(1, 2) (1, 2)(3, 4) (1, 2, 3) (1, 2, 3, 4) (1, 2, 4, 3) (1, 2, 4)
(1, 3, 2) (1, 3, 4, 2) (1, 3) (1, 3, 4) (1, 3)(2, 4) (1, 3, 2, 4)
(1, 4, 3, 2) (1, 4, 2) (1, 4, 3) (1, 4) (1, 4, 2, 3) (1, 4)(2, 3)

Recall that cycles with an even number of terms are odd permutations. The 6
transpositions and the 6 four-cycles are thus odd, and since there are exactly
24 permutations of {1, 2, 3, 4} we know that 12 of them are even and 12 are
odd. So the transpositions and the 4-cycles are the only odd permutations
of {1, 2, 3, 4}. Looking back at the original expression, we see that the terms
with minus signs are exactly the ones that correspond to odd permutations:
the 2nd, 3rd and 6th terms in the first and third rows, and the 1st, 4th and
5th terms in the second and last rows.

4. (i) Let G be a finite group and let H be a nonempty subset of G satisfying
(SG1) (closure). Show that H automatically satisfies (SG2) and (SG3).

(ii) Find an infinite group G and a nonempty subset H of G such that H
satisfies (SG1) but neither (SG2) nor (SG3).

Solution.

(i) Suppose that H is closed and a ∈ H. The elements a, a2, a3, . . . cannot
be all distinct, since G is finite. So there exist positive integers r, s with
r > s and ar = as. Multiplying this equation by (a−1)s gives ar−s = e
(identity). Since H is closed under multiplication and a ∈ H, it follows
that ak ∈ H for all k > 0. In particular, ar−s ∈ H. That is, e ∈ H. So
H satisfies (SG2).

6

We have shown that there exists a positive integer n such that an = e.
If n = 1 then a = e = a−1, and so a−1 ∈ H. If n > 1 then n − 1 ≥ 1,
and so an−1 ∈ H (by closure). Since a(an−1) = (an−1)a = e we see that
an−1 = a−1, and so a−1 ∈ H. So H satisfies (SG3).

(ii) Take G to be Z (integers) under addition. Let H = {1, 2, 3, . . . }, the
positive integers. Then H is closed under addition: (SG1) holds. But
0 /∈ H; so (SG2) does not hold. And 1 ∈ H while −1 /∈ H; so (SG3)
does not hold.

5. Let f ∈ Sym(n) and 1 ≤ m ≤ n. The permutation f takes the numbers 1, 2,
. . . , m to some other numbers 1f , 2f , . . . , mf . Show that the set

K = { f ∈ Sym(n) | {1, 2, . . . ,m} = {1f , 2f , . . . ,mf} }

is a subgroup of Sym(n). (We call K the setwise stabilizer of {1, . . . ,m}.
Although a permutation in K maps this set to itself, it need not fix any of
the numbers individually.) Find the order of K, and deduce that m!(n−m)!
is a divisor of n!. (Use Lagrange’s Theorem.)

Solution.

Observe that for all permutations f , the set {1f , 2f , . . . ,mf} has the same
number of elements as {1, 2, . . . ,m}. So {1f , 2f , . . . ,mf} = {1, 2, . . . ,m} if
and only if if ∈ {1, 2, . . . ,m} for all i ∈ {1, 2, . . . ,m}. Thus it follows that
K = { f ∈ Sym(n) | if ∈ M for all i ∈ M }.
Let f, g ∈ K, and let i ∈ M . Then if ∈ M (since f ∈ K) and so (if )g ∈ M
(since g ∈ K). Thus i(fg) = (if )g ∈ M for all i ∈ M . Thus fg ∈ K. This
holds for all f, g ∈ K; so K satisfies (SG1) (closure under multiplication).
Obviously iid = i ∈ M for all i ∈ M . So id ∈ K. So K satisfies (SG2).
Let f ∈ K and i ∈ {1, 2, . . . ,m}. Since {1, 2, . . . ,m} = {1f , 2f , . . . ,mf},
there exists j ∈ M such that i = jf . So if

−1
= j ∈ M . Since i was an

arbitrary element of M , we have shown that if
−1 ∈ M for all i ∈ M . So

f−1 ∈ K. Hence K satisfies (SG3) (closure under forming inverses).
An element of K consists of a permutation of M (a set of size m) together
with a permutation of {1, . . . , n} \ M (a set of size n − m). There are m!
possibilities for the former and (n−m)! for the latter; so #K = m!(n−m)!.
Lagrange’s Theorem states that the order of a subgroup of a finite group is
always a divisor of the order of the group. Since K is a subgroup of Sym(n)
and #Sym(n) = n! it follows that m!(n − m)! divides n!. (Of course we
already knew this since the binomial coefficient

(
n
m

)
is an integer and equals

n!
m!(n−m)! .)


