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1. Check that { % , —\% } is an orthonormal set.
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Solution.

Call the vectors u and v (respectively). We find that
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as required.

2. Leta; =(2,2,-1)7 and ap = (—1,2,2)7.
(i) Check that {@1,a2} is an orthogonal set of vectors. Normalize g; and
a2 to produce an orthonormal set.

(ii) Let v = (0,3,0)T. Find the projections of v onto the one-dimensional
spaces spanned by a1 and as.

(iii) Use Part (ii) to find the projection of v onto the subspace W of R?
spanned by {a1, az}.

(iv) Express v as the sum of two vectors, one in W and the other orthogonal

to W.
Solution.
(i) a1-az = —2+ 22 — 2 = 0; so the vectors are orthogonal to each other,
as required. Now ||a1| = /22 +22 + (=1)2 = /9 = 3, and similarly
|la2|l = 3 also. To normalize you divide each vector by its length; you

get the following orthonormal set:
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(ii) The projection of v onto Span(a;) is
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and the projection of v onto Span(as) is
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(#i) Since {a1,a2} is an orthogonal set, the projection of any vector onto
W = Span(aj,as) is the sum of its projections onto Span(a;) and
Span(az). So the projection p of v onto W' is
4/3 —2/3 2/3
p=p tpa=| 4/3 |+ | 4/3 | =|8/3
—2/3 4/3 2/3

(iv) By the definition of projection, v — p is orthogonal W. So the required
expression is v = p+ (v —p) = 3(1,4,1) + 3(—2,1,-2).
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3. Apply the Gram-Schmidt process to the vectors [ 1 |, 1 and | 2
1 0 1

Solution.

Call the given vectors a1, as, as. Recall that the Gram-Schmidt formula is

i—1
Qi - Ui
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Firstly,u1 =a; = | 1 |. Now since g2 -u; = 1 1] =-1+14+0=0,
1 0 1
(—1
a2 - Ui
U = g — up=as =1\ 1
Uq - U1
~hoE 0
Similarly, since uy -u; = 12+ 12+ 12 =3 and uy - us = (=1)2 + 12+ 0% = 2,
as well as
1 1 1 -1
azrur=|(2]-11] =4, and az-us=1| 2 1 =1,
1 1 1 0
we obtain that
as - U1 as - U2
U3 = as — Uy — U2
Uy - U1 U2 - U2
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cosf) —sinf

4. Show that for any real number 0, the matrix | .
sinf  cosf

) is orthogonal.

Solution.

A matrix A is orthogonal if and only if it is square and satisfies ATA = I.
The given matrix A is certainly square (it is 2 x 2), and

T, [ cosf sinf cosf —sind
A= (—sin@ cos@) (sin9 cosf )
_ (cos )2 + (sin6)? cosf(—sinf) +sinfcosf\ I
"\ —sinfcosf + cosfsin b (—sinf)? + (cos 6)? oY

as required.
5. Show that if Q is symmetric and orthogonal, then Q% = I.

Solution.

Since @ is orthogonal, Q7 Q = I. Since Q is symmetric, Q7 = Q. Substituting
the value for Q7 from the second equation into the first gives Q2 = I.

6. (i) Let Abean m xn matrix and B a p x ¢ matrix. What condition on the
numbers n, m, p and ¢ is necessary and sufficient for the product AB
to exist? When this condition holds, what is the shape of AB?

(ii) Let u be a (column) vector in R™. Using Part (i), show that uTu and
wu” both exist, and determine their shapes. Show, furthermore, that
(uuT)? is a scalar multiple of yu”, and show that the scalar involved
equals ||ul|?.

(ii1) Let u be as in Part (i), and suppose in addition that u has length 1.
Show that the matrix I —2yu” is both symmetric and orthogonal. (Here
I is the n x n identity matrix).

Solution.
(i) AB exists if and only if n = p, and then AB is an m x ¢ matrix. (The
product of an m X n matrix by an n X ¢ matrix gives an m X ¢ matrix.)
(7i) wisn x1and uT is 1 x n. So, by Part (i), uu? is n x n and uZu is
1 x 1. Note that a 1 x 1 matrix is just a scalar. Thus u”v = k, some
real number. In fact, uTu = v - u = ||ul|*; so k = ||ul|?>. Now

T)2 T, T

=wu"wu” = u(u”

wu" =uku” = k(uu”),

since the multiplication of scalars by vectors is commutative. So (yu®)?

is a scalar multiple of uu”, and the scalar is k = ||u||?, as required.
(iii) Let M = I —2yu”. Then

M = (I =2uu™)" = 1" —2(wu™)" =T —2(u")"u” = I - 20",
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since I is symmetric and transposing reverses multiplication. So M7T
equals M; that is, M is symmetric. To check that M is orthogonal we
must show that M7 M = I, but since MT = M this is just M? = I.
Observe that M = I — 2N, where N = uu’, the matrix we considered
in Part (ii). There we showed that N? = kN, where k = |lul|?. Since
we are assuming now that v has length 1, we have k = 1, and N2 = N.
So
M?=(I—-2N)>=1—4N +4N? =] — 4N +4N =1,

as required.



