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Semester 2, 2003 Lecturer: R. Howlett

Computer Tutorial 12
This tutorial explores the groups of rotations of the Platonic solids. The Platonic
solids are the five regular polytopes in three dimensions: the tetrahedron, the cube, the
octahedron, the icosahedron and the dodecahedron. We shall represent the rotations of
these solids as permutations of the vertices. In each case the full group of symmetries
is twice as big as the group of rotations(and includes reflections and other kinds of
transformations.)

1. The tetrahedron: Set up the group as
> T := PermutationGroup< 4 | (1,2,3), (1,3,4) >;
Check thatT has order 12 and is equal to the alternating group Alt(4). Convince
yourself (by looking at the diagram) that the elements ofT give all possible
rotations of the tetrahedron.

Solution.
> T:=PermutationGroup<4 | (1,2,3),(1,3,4)>; > #T; 12

It is clear that(1, 2, 3) and (1, 3, 4) are rotational symmetries of the tetrahedron,
andMAGMA tells us that the groupT they generate has order 12. Since(1, 2, 3) and
(1, 3, 4) are both even permutations, the group they generate must be a subgroup of
the group of all even permutations, Alt(4). But Alt(4) has order 12(since half the
24 permutations of{1, 2, 3, 4} are even) andMAGMA tells us thatT has order 12;
so T = Alt(4). You can getMAGMA to confirm this: typeT eq Alt(4); MAGMA

will respondtrue.

> T eq Alt(4);
true
> Set(T);
{ (1, 2, 3),

(1, 3, 4),
(1, 2, 4),
(1, 3)(2, 4),
(1, 2)(3, 4),

(2, 3, 4),
(1, 3, 2),
Id(T),
(1, 4, 3),
(1, 4)(2, 3),
(1, 4, 2),
(2, 4, 3)

}

For each vertex of the tetrahedron there are two rotational symmetries that fix
that vertex: the line joining the vertex to the centroid of the opposite face is the
axis of rotation, and you can rotate through either 120◦ or 240◦. These rotations
all have order 3, and correspond to the eight 3-cycles in Alt(4). For each edge
of the tetrahedron there is a unique opposite edge(joining the two vertices that
are not on the given edge). The rotation through 180◦ about the line joining
the midpoints of a pair of opposite edges is a symmetry. This gives three more
rotational symmetries. The identity is the 12th.
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How do we know that there are no more rotational symmetries? Certainly the
tetrahedron has some reflection symmetries(six, in fact). For example, the trans-
position (1, 2) corresponds to the reflection in the plane that is the perpendicular
bisector of the edge joining vertices 1 and 2.(Note that vertices 3 and 4 lie in this
plane.) Similarly, the other five transpositions in Sym(4) correspond to reflections
in the planes that are the perpendicular bisectors of the other edges. Since every
symmetry of the tetrahedron must correspond to some permutation of the vertices,
the group of all symmetries must be some subgroup of Sym(4). So the order
of the group of all symmetries must be a divisor of 24. Since we have already
geometrically identified 18 symmetries, it follows that the symmetry group of the
tetrahedron is the whole of Sym(4). The six symmetries that we have not yet geo-
metrically identified correspond to the 4-cycles in Sym(4) (such as(1, 2, 3, 4)). If
` is the line joining the midpoint of the edge 1-3 with the midpoint of the edge 2-4
then a rotation of 90◦ about the axis̀ followed by the reflection in the plane that
is the perpendicular bisector of` is a symmetry of the tretrahedron corresponding
to a 4-cycle. The other 4-cycles arise similarly.

It is not quite clear that these 4-cycles cannot also be described as rotations in
some obscure way. To prove that they are definitely not rotations we need to
use some linear algebra. Any rotation ofR3 fixes all the points on some one-
dimensional subspacè (the axis of rotation). Let P be the plane through the
origin perpendicular to the linè. Then the rotation acts onP like a rotation
of R2. If we now choose an orthonormal basis ofR3 made up of one vector oǹ

and two inP then the matrix of the rotation has the form

(
1 0 0
0 cosθ − sinθ

0 sinθ cosθ

)
(where

θ is the angle of rotation). Since this matrix has determinant 1, we conclude that
every rotation ofR3 has determinant 1. A similar analysis can be used to show
that reflections have determinant−1. And the transformations that correspond
to the 4-cycles also have determinant−1, since they can each be described as
the product of one reflection and one rotation. To sum all this up, the 12 even
permutations in Sym(4) (i.e. the elements of Alt(4)) correspond to rotational
symmetries, and these all have determinant−1, while the 12 odd permutations in
Sym(4) correspond to symmetries that have determinant−1.

It is also possible to use linear algebra to prove that the product of two rotations of
R3 is also a rotation, and from this it follows readily that the set of all rotational
symmetries of an object inR3 is always a group. Note that symmetries with
determinant−1 cannot be physically performed on a rigid body in the ordinary
space in which we live; so it is perhaps debatable whether or not they should be
counted as “real” symmetries.
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2. The cube: Set up the group as
> C:=PermutationGroup< 8 | (1,2,3,4)(8,7,6,5), (2,4,6)(7,5,3)>;



3

(i) Print the elements ofC and use the diagram of the cube to work out the
correspondence between rotations and permutations. Convince yourself that
C contains all possible rotations of the cube.

(ii) As well as acting on the vertices of the cube the group acts on the four lines
through opposite pairs of vertices. To see that the group just permutes these
amongst themselves, type the following
> pairs := {1,8}^C;
> pairs;
To find the effect of the elements ofC on these four pairs of vertices you
can type the following:
> f,G,K := Action(C,pairs);
In carrying out this commandMAGMA will construct a homomorphismf
from C to the group of permutations of the setpairs. For eachg ∈ C, f (g)
is the corresponding permutation. The groupG is the image off and the
groupK is its kernel.

(iii ) Check that the image off consists of all permutations of the four pairs and
that the kernel contains only the identity element ofC. It can be shown that
a homomorphism whose kernel consists of the identity element only must be
one-to-one. Conclude that the group of rotations of the cube is isomorphic
to Sym(4).

(iv) If you look at the cube and think hard you should be able to see that there
are three pairs of opposite faces and that the rotations of the cube permute
these amongst themselves. In this part of the question you will construct a
homomorphism fromC to the group of permutations of these three pairs of
faces. Here is theMAGMA code.
> faces := {{1,2,3,4},{5,6,7,8}}^C;
> print faces;
> f1,G1,K1 := Action(C,faces);
Check that the image of the homomorphismf1 is the group of all permu-
tations of the three pairs of faces, and conclude that it is isomorphic to
Sym(3). Do you recognize the kernel?

Solution.

Given that the rotational symmetries of the cube form a group, it is easily seen that
it has order 24. Imagine the cube placed on a desk. You can obviously rotate it
so that any chosen face becomes the uppermost face. Since the faces are squares,
there are then four possible rotations that leave the same face on top. This gives
us all possible orientations. So the total number of rotations is the number of
faces(six) times the number of rotations that fix a given face(four). This same
argument applies to all the platonic solids: the order of the rotation group is the
number of faces times the number of sides of each face.

> C:=PermutationGroup<8 | (1,2,3,4)(8,7,6,5), (2,4,6)(7,5,3)>;
> #C;
24
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> Set(C);
{ (1, 2, 3, 4)(5, 8, 7, 6),

(1, 7, 5)(2, 4, 8),
(1, 3)(2, 4)(5, 7)(6, 8),
(1, 3, 5)(4, 8, 6),
(1, 4, 3, 2)(5, 6, 7, 8),
(1, 2, 5, 6)(3, 8, 7, 4),
(1, 6, 5, 2)(3, 4, 7, 8),
(1, 8)(2, 7)(3, 4)(5, 6),
(1, 4)(2, 7)(3, 6)(5, 8),
(1, 2)(3, 6)(4, 5)(7, 8),
(1, 5, 7)(2, 8, 4),
(2, 6, 4)(3, 5, 7),
(1, 5)(2, 6)(3, 7)(4, 8),
(1, 7, 3)(2, 6, 8),
(1, 8)(2, 3)(4, 5)(6, 7),
(1, 5, 3)(4, 6, 8),
(1, 6)(2, 7)(3, 8)(4, 5),
Id(C),
(1, 7)(2, 8)(3, 5)(4, 6),
(1, 8)(2, 5)(3, 6)(4, 7),
(1, 4, 7, 6)(2, 3, 8, 5),
(1, 3, 7)(2, 8, 6),
(2, 4, 6)(3, 7, 5),
(1, 6, 7, 4)(2, 5, 8, 3)}

The six permutations here that are products of two 4-cycles correspond to 90◦

rotations (clockwise or anticlockwise) about axes joining the middle points of
pairs of opposite faces. The 180◦ rotations about these axes give the permuta-
tions(1, 7)(4, 6)(2, 8)(3, 5), (1, 3)(2, 4)(5, 7)(6, 8) and(1, 5)(2, 6)(3, 7)(4, 8). The
other six permutations that are the products of four disjoint transpositions corre-
spond to 180◦ rotations about axes that join midpoints of pairs of opposite edges.
For each of the four pairs of opposite vertices there are two rotational symmetries
of order 3: you can rotate clockwise or anticlockwise through 120◦ about the axis
joining the opposite vertices. This gives the eight permutations in the above list
that are products of two 3-cycles.

> pairs := {1,8}^C;
> pairs;
GSet{

{ 3, 6 },
{ 2, 7 },
{ 1, 8 },
{ 4, 5 }}

We chose the numbering of the vertices so that 8, 7, 6 and 5 are opposite to 1,
2, 3 and 4 respectively. Since it is clear that a symmetry that takes vertexi to
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vertex j must take the opposite ofi to the opposite ofj, every rotational symmetry
of the cube gives rise to some permutation of the four pairs of opposite vertices.
The MAGMA command pairs := {1,8}^C definedpairs to be the set of all
pairs of the form{1g, 8g}, for g in the groupC; the above output confirms that
pairs = {{1, 8}, {2, 7}, {3, 6}, {4, 5}}.
Let us write1 = {1, 8}, 2 = {2, 7}, 3 = {3, 6} and4 = {4, 5}. It is easy to write
down the permutations of{1, 2, 3, 4} corresponding to the 24 permutations inC.
For example,(1, 2, 3, 4)(8, 7, 6, 5) corresponds to(1, 2, 3, 4) and (1, 7, 5)(2, 4, 8)
corresponds to(1, 2, 4). The MAGMA commandf,G,K:=Action(C,pairs) de-
fines f to be exactly this function fromC to permutations of{1, 2, 3, 4} (but
MAGMA has to write{1, 8} rather than1, etc.).

> f,G,K := Action(C,pairs);
> f(C!(1,2,3,4)(8,7,6,5));
({ 3, 6 }, { 4, 5 }, { 1, 8 }, { 2, 7 })
> f(C!(1,7,5)(2,4,8));
({ 2, 7 }, { 4, 5 }, { 1, 8 })

The groupG, the image off, consists of all 24 permutations of{1, 2, 3, 4}. That
is, every permutation of{1, 2, 3, 4} arises asf(c) for somec in C.

> G;
Permutation group G acting on a set of cardinality 4

({ 3, 6 }, { 4, 5 }, { 1, 8 }, { 2, 7 })
({ 3, 6 }, { 2, 7 }, { 4, 5 })

> #G;
24
> K;
Permutation group K acting on a set of cardinality 8
Order = 1

SinceG has the same number of elements asC it follows that the mappingf must
be one-to-one.(In particular, there is only one element ofC that gets mapped to
the identity permutation ofpairs. That is, the kernelK has only one element.)
So C is isomorphic toG; that is,C is essentially just Sym(4).

> faces := {{1,2,3,4},{5,6,7,8}}^C;
> faces;
GSet{

{
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 }

},
{

{ 1, 2, 5, 6 },
{ 3, 4, 7, 8 }

},
{

{ 1, 4, 6, 7 },
{ 2, 3, 5, 8 }

}
}
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> f1,G1,K1 := Action(C,faces);
> #G1;
6
> K1;
Permutation group K1 acting on a set of cardinality 8
Order = 4 = 2^2

(1, 3)(2, 4)(5, 7)(6, 8)
(1, 7)(2, 8)(3, 5)(4, 6)

> f(K1);
Permutation group acting on a set of cardinality 4

({ 3, 6 }, { 1, 8 })({ 2, 7 }, { 4, 5 })
({ 3, 6 }, { 4, 5 })({ 2, 7 }, { 1, 8 })

> Set(f(K1));
{

Id($),
({ 3, 6 }, { 1, 8 })({ 2, 7 }, { 4, 5 }),
({ 3, 6 }, { 2, 7 })({ 1, 8 }, { 4, 5 }),
({ 3, 6 }, { 4, 5 })({ 2, 7 }, { 1, 8 })

}

There are three pairs of opposite faces, and the groupG1 is a group of permutations
of these three objects. SinceG1 has 6 elements, it must consist of all permutations
of the pairs of opposite faces. Sincef1 takes the 24 elements ofC to the 6 elements
of G1, the mapf1 is certainly not one-to-one. In fact,C is essentially Sym(4) and
G1 is essentially Sym(3), andf1 is the same homomorphism from permutations
of 4 things to permutations of three things that we described in lectures(see
Question 2 of Computer Tutorial 10). The kernel of this homomorphism consists
of the identity and the three permutations in Sym(4) that are products of of two
disjoint transpositions. TheMAGMA output above confirms this:Set(f(K1)) lists
the permutations of{1, 2, 3, 4} corresponding to elements ofK1, and we see that
they are id, (3, 1)(2, 4), (3, 2)(1, 4), (3, 4)(2, 1).

3. The group of the tetrahedron is isomorphic to Alt(4) and the group of the cube
is isomorphic to Sym(4). In fact it is possible to place two tetrahedra inside
the cube in such a way that the even permutations in Sym(4) fix the tetrahedra
setwise and the odd permutations in Sym(4) interchange the two tetrahedra. The
two tetrahedra aret1 = {2, 4, 6, 8} and t2 = {1, 3, 5, 7}.

(i) Check that every element ofC either leavest1 in place or sends it tot2. Do
this with the followingMAGMA code.
> t1 := {2,4,6,8};
> for g in C do
for> t1^g;
for> end for;

(ii) UseMAGMA to find the stabilizer oft1. That is,
> H := Stabilizer(C,t1);What is the order ofH? Is this one of the
groups you have seen before? Which one?
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Solution.

Two vertices of the cube are said to beadjacentif they are connected by an edge.
It is possible to colour the vertices black and white in such a way that adjacent
vertices are always oppositely coloured. Four of the eight vertices will be white
and four black; going diagonally across faces moves you between vertices of the
same colour.

Since symmetries take adjacent vertices to adjacent vertices, a symmetry that takes
a black vertex A to a white vertex B will take the white vertices adjacent to A to
the black vertices adjacent to B. It follows readily that such a symmetry must take
all the black vertices to white vertices and all the white vertices to black vertices.
And similarly a symmetry that takes one black vertex to a black vertex must take
all the black vertices to black vertices. Our numbering of the vertices is such
that the odd-numbered vertices are one colour and the even-numbered vertices the
opposite colour.

> t1 := {2,4,6,8};
> for g in C do
for> t1^g;
for> end for;
{ 2, 4, 6, 8 }
{ 1, 3, 5, 7 }
{ 2, 4, 6, 8 }
{ 1, 3, 5, 7 }
{ 2, 4, 6, 8 }
{ 1, 3, 5, 7 }
{ 2, 4, 6, 8 }
{ 1, 3, 5, 7 }
{ 2, 4, 6, 8 }
{ 1, 3, 5, 7 }
{ 2, 4, 6, 8 }
{ 1, 3, 5, 7 }
{ 2, 4, 6, 8 }
{ 1, 3, 5, 7 }
{ 2, 4, 6, 8 }
{ 1, 3, 5, 7 }
{ 2, 4, 6, 8 }

{ 1, 3, 5, 7 }
{ 2, 4, 6, 8 }
{ 1, 3, 5, 7 }
{ 2, 4, 6, 8 }
{ 1, 3, 5, 7 }
{ 2, 4, 6, 8 }
{ 1, 3, 5, 7 }
> H := Stabilizer(C,t1);
> #H;
12
> H;
Permutation group H acting

on a set of cardinality 8
Order = 12 = 2^2 * 3

(1, 3, 7)(2, 8, 6)
(2, 6, 4)(3, 5, 7)

> f(H);
Permutation group acting on

a set of cardinality 4
({ 3, 6 }, { 2, 7 }, { 1, 8 })
({ 3, 6 }, { 4, 5 }, { 2, 7 })

The black vertices of the cube can be regarded as the vertices of a tetrahedron, the
edges of which run diagonally across the faces of the cube. The rotations of the
cube that take black vertices to black vertices are symmetries of this tetrahedron.
Of course, these same symmetries also take white vertices to white vertices, and
are thus also symmetries of the tetrahedron made up by the white vertices.

In the MAGMA output above,H is the group of colour-preserving rotations ofC.
Half the 24 elements ofC are in H. We know thatC is isomorphic to Sym(4),
andH is isomorphic to Alt(4). The output above confirms that the isomorphismf
takesH to the group generated by the 3-cycles(3, 2, 1) and(3, 4, 2), and(cf. Q1)
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this is the alternating group on{1, 2, 3, 4}.
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4. The Octahedron:
> O:=PermutationGroup< 6 | (1,2,3)(4,6,5), (2,3,5,4)>;

(i) Print out the elements ofO and convince yourself that all rotations of the
octahedron are accounted for.

(ii) What is the order ofO?

(iii ) Observe that if you put a vertex at the centre of each face, these eight new
vertices will describe a cube. Thus the groupO must be isomorphic toC,
the group of rotations of the cube. UseMAGMA to construct the action ofO
on its faces:
> triples := {1,2,3}^O;
> print triples;
> g, H, L := Action(O,triples);

Solution.
> O:=PermutationGroup

<6|(1,2,3)(4,6,5),(2,3,5,4)>;
> Set(O);
{

(1, 6)(2, 3)(4, 5),
(1, 4, 2)(3, 5, 6),
(1, 5)(2, 6)(3, 4),
(1, 3, 2)(4, 5, 6),
(1, 2, 6, 5),
(1, 5, 3)(2, 4, 6),
(1, 3)(2, 5)(4, 6),
(1, 6)(2, 4)(3, 5),
(1, 2)(3, 4)(5, 6),
(1, 4, 5)(2, 6, 3),
(2, 4, 5, 3),

(1, 6)(2, 5),
Id(O),
(2, 5)(3, 4),
(2, 3, 5, 4),
(1, 2, 4)(3, 6, 5),
(1, 3, 6, 4),
(1, 4)(2, 5)(3, 6),
(1, 5, 4)(2, 3, 6),
(1, 4, 6, 3),
(1, 5, 6, 2),
(1, 3, 5)(2, 6, 4),
(1, 2, 3)(4, 6, 5),
(1, 6)(3, 4)

}

There are four pairs of opposite faces; rotations of 120◦ and 240◦ about the axes
joining centroids of opposite faces are symmetries of the octahedron. This gives
the 8 elements of order 3 inO. There are three pairs of opposite vertices, giving
three axes for which there are rotations through 90◦ and 270◦. This gives the six
rotations of order 4. Rotations through 180◦ about these same three axes are also
symmetries: these correspond to the permutations that are products of two disjoint
2-cycles. There are 6 pairs of opposite edges, and for each pair there is a rotation
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through 180◦ about the axis through the midpoints of the two edges. Together
with the identity, this makes 24 rotations. Since the octahedron has 8 triangular
faces, this is in agreement with the formula stated in the solution to Q2 above: the
order of the group is the product of the number of faces and the number of edges
of each face. As with the groupC there are 8 elements of order 3, 6 of order 4
and 9 of order 2, three of these 9 being the squares of the elements of order 4. As
explained in the question,O is in fact isomorphic toC.

> #O;
24
> triples := {1,2,3}^O;
> print triples;
GSet{

{ 3, 5, 6 },
{ 1, 3, 5 },
{ 2, 3, 6 },
{ 1, 4, 5 },
{ 1, 2, 3 },
{ 2, 4, 6 },
{ 1, 2, 4 },
{ 4, 5, 6 }

}
> g, H, L := Action(O,triples);
> H;
Permutation group H acting on a set of cardinality 8
({3,5,6},{1,4,5},{2,4,6})({1,3,5},{1,2,4},{2,3,6})
({3,5,6},{4,5,6},{2,4,6},{2,3,6})({1,3,5},{1,4,5},

{1,2,4},{1,2,3})
> #H;
24
> L;
Permutation group L acting on a set of cardinality 6
Order = 1

The set{1, 2, 3} corresponds to one of the faces of the octahedron, andtriples
is defined to be the set of everything obtained from{1, 2, 3} by a rotation of the
octahedron. Sotriples is the set of all faces of the octahedron. It is easy to use
the diagram to check thatMAGMA’s list of the elements oftriples is correct.

The aboveMAGMA code definesg to be a homomorphism fromO onto H, which
is a group of permutations oftriples, the set of faces the octahedron. The
homomorphism is an isomorphism sinceH has the same number of elements asO.
This also means that the kernelL must have order 1.

We can associate the faces of the octahedron with the vertices of the cube as
follows: {1, 2, 3} ↔ 1, {1, 3, 5} ↔ 2, {1, 5, 4} ↔ 3, {1, 4, 2} ↔ 4, {6, 5, 4} ↔ 8,
{6, 4, 2} ↔ 7, {6, 2, 3} ↔ 6, {6, 3, 5} ↔ 5. The generatorsMAGMA gave forH
above correspond exactly to the generators we gave forC, showing thatH and C
are isomorphic.
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5. The Dodecahedron and Icosahedron:
> I:=PermutationGroup<12 |

(2,3,4,5,6)(11,10,9,8,7), (1,6,9,8,3)(12,7,4,5,10)>;
> D:=PermutationGroup<20 |

(1,2,3,4,5)(10,9,8,7,6)(11,12,13,14,15)(20,19,18,17,16),
(2,5,9)(3,10,15)(4,14,8)(6,18,11)(7,13,17)(12,19,16)>;

(i) The icosahedron and the dodecahedron aredual in that you can get one
from the other by putting a vertex in the centre of each face. Therefore they
have the same group of rotations. Check the order of each group to get a
first indication of this. What other groups of this order have you met in this
course?

(ii) Not all the vertices are visible in the diagrams. Can you work out the
numbering of the hidden faces?(Hint. Use the group to find the images of
one of the faces you can see, following the steps of the previous question.)

(iii ) The dodecahedron has 20 vertices and it turns out that you can divide these
up into five lots of four so that each set of four is a tetrahedron. There are
two ways to do this. One of them is given as follows:
> tetra := {1,6,11,18}^D;
> tetra;
You should find that there are five sets intetra. This means thatD per-
mutes these 5 tetrahedra. In factD is the alternating group of this set of 5
tetrahedra. Can you explain why this is so?

Solution.
> I:=PermutationGroup<12 | (2,3,4,5,6)(11,10,9,8,7),
(1,6,9,8,3)(12,7,4,5,10)>;
> D:=PermutationGroup<20 |

(1,2,3,4,5)(10,9,8,7,6)(11,12,13,14,15)(20,19,18,17,16),
(2,5,9)(3,10,15)(4,14,8)(6,18,11)(7,13,17)(12,19,16)>;

> #D;
60
> #I;
60

Our numbering of the 20 vertices of the dodecahedron can be described as follows.
On one of the faces the vertices are numbered 1,2,3,4,5 in anticlockwise order.
There is another face containing the edge joining vertices 1 and 2. The vertices
on this face are 2,1,9,15,8(also in anticlockwise order). The full list of faces(all
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given in anticlockwise order) is as follows:

1, 2, 3, 4, 5 2, 1, 9, 15, 8 3, 2, 8, 11, 7 4, 3, 7, 12, 6
5, 4, 6, 13, 10 1, 5, 10, 14, 9 15, 9, 14, 18, 17 11, 8, 15, 17, 16

12, 7, 11, 16, 20 13, 6, 12, 20, 19 14, 10, 13, 19, 18 16, 17, 18, 19, 20

Numbers on opposite vertices add up to 21.

The 12 vertices of the icosahedron are numbered in accordance with the following
description. The five vertices adjacent to vertex 1 are 2,3,4,5,6(anticlockwise).
Opposite vertices add up to 13; so the vertices adjacent to vertex 12 are 11,10,9,8,7.
The faces are as follows:

1, 2, 3 1, 3, 4 1, 4, 5 1, 5, 6 1, 6, 2
2, 8, 3 3, 7, 4 4, 11, 5 5, 10, 6 6, 9, 2
2, 9, 8 3, 8, 7 4, 7, 11 5, 11, 10 6, 10, 9
12, 7, 8 12, 8, 9 12, 9, 10 12, 10, 11 12, 11, 7

The groupsI and D must be isomorphic since the icosahedron and the dodeca-
hedron are dual to one another. They have 60 elements. The alternating group
Alt(5) also has 60 elements, and in factI andD are isomorphic to Alt(5).

> tetra := {1,6,11,18}^D;
> tetra;
GSet{

{ 2, 10, 12, 17 },
{ 4, 8, 14, 20 },
{ 5, 7, 15, 19 },
{ 3, 9, 13, 16 },
{ 1, 6, 11, 18 }

}
> k,M,N := Action(D,tetra);
> k;
Mapping from: GrpPerm: D to GrpPerm: M
> M;
Permutation group M acting on a set of cardinality 5
({2,10,12,17},{3,9,13,16},{4,8,14,20},{5,7,15,19},{1,6,11,18})
({2,10,12,17},{5,7,15,19},{3,9,13,16})

> #M;
60
> N;
Permutation group N acting on a set of cardinality 20
Order = 1

The homomorphismk constructed here takesD ontoM, a group of permutations of
the five tetrahedra. SinceM has the same number of elements asD they must be
isomorphic.

In order to properly understand this isomorphism, it is necessary to study a real
dodecahedron, not just a picture. The five tetrahedra can be described as follows.
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Imagine an insect that crawls along the edges of the dodecahedron. Since three
edges meet at each vertex, when the insect reaches a vertex it will have a choice
of two edges to crawl along next(assuming it doesn’t turn round): it can take
the left fork or the right fork. Suppose now that the insect starts at vertex A,
crawls along an edge to an adjacent vertex, turns to the right and crawls to the
next vertex, then turns to the left, crawls along one more edge and then stops.
Call the vertex it reaches like this vertex B. Now suppose the insect returns to
vertex A and repeats the process, but chooses a different edge leading from A
to start with. Call the vertex it reaches C. And starting again from A, take the
third edge leading from A and repeat the procedure(turn right at the first fork,
left at the second) to reach vertex D. Then A, B, C and D are the vertices of
a regular tetrahedron. Any symmetry of the dodecahedron will clearly take a
tetrahedron found by the above procedure to another one. Since it turns out that
there are precisely five such tetrahedra, the groupD permutes these five objects.
Using the classification of rotational symmetries of the regular tetrahedron(see
Q1) it is not hard to see that there is no rotation ofR3 apart from the identity
that preserves all five of these tetrahedra. SinceD has order 60, it follows that
we obtain 60 distinct permutations of the five tetrahedra. It can be shown that
Alt(5) is the only subgroup of Sym(5) with 60 elements; soD must be isomorphic
to Alt(5). Alternatively, one can check directly that the generators ofD give rise
to even permutations oftetra. The MAGMA function Sign returns+1 for even
permutations and−1 for odd permutations.

> x:=D!(1,2,3,4,5)(10,9,8,7,6)(11,12,13,14,15)(20,19,18,17,16);
> y:=D!(2,5,9)(3,10,15)(4,14,8)(6,18,11)(7,13,17)(12,19,16);
> k(x);
({2,10,12,17},{3,9,13,16},{4,8,14,20},{5,7,15,19},{1,6,11,18})
> Sign(k(x));
1
> k(y);
({2,10,12,17},{5,7,15,19},{3,9,13,16})
> Sign(k(y));
1

The elementsx andy generateD. The isomorphismk takes them to permutations
of tetra that are(repectively) a 5-cycle and a 3-cycle. Since 5-cycles and 3-
cycles are both even, and products of even permutations are even, all things in the
group generated byx andy will also give rise to even permutations oftetra. So
D is isomorphic to a group of even permutations of the set 5-element settetra,
and since #D = 60, it is isomorphic to the whole of Alt(5).


