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MATH2008 Introduction to Modern Algebra
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2008/)

Semester 2, 2003 Lecturer: R. Howlett

Computer Tutorial 12
This tutorial explores the groups of rotations of the Platonic solids. The Platonic
solids are the five regular polytopes in three dimensions: the tetrahedron, the cube, the
octahedron, the icosahedron and the dodecahedron. We shall represent the rotations of
these solids as permutations of the vertices. In each case the full group of symmetries
is twice as big as the group of rotatiofand includes reflections and other kinds of
transformations.

1. Thetetrahedron: Set up the group as
> T := PermutationGroup< 4 | (1,2,3), (1,3,4) >;
Check thafT has order 12 and is equal to the alternating groug4AltConvince
yourself (by looking at the diagrainthat the elements of give all possible
rotations of the tetrahedron.

Solution.
] > T:=PermutationGroup<4 | (1,2,3),(1,3,4)>; > #T; 12 \

It is clear that(1,2,3) and (1,3, 4) are rotational symmetries of the tetrahedron,
andMAGMA tells us that the group they generate has order 12. Sir{de2, 3) and

(1,3, 4) are both even permutations, the group they generate must be a subgroup of
the group of all even permutations, A}. But Alt(4) has order 1Zsince half the

24 permutations of1,2, 3,4} are evef and MAGMA tells us thatT has order 12;

soT = Alt(4). You can getMAGMA to confirm this: typelT eq Alt(4); MAGMA

will respondtrue.

> T eq Alt(4); (2, 3, 4),
true 1, 3, 2),
> Set(T); 1d(T),
{ (1, 4, 3)
1’ 2: 3 B 4 > B
El 3 4; (1, &2, 3),
a. 2, 4, (1. 4, 2,
(1, 32, 9, (2, 4, 3)
(1, 2)(3, 4), )

For each vertex of the tetrahedron there are two rotational symmetries that fix
that vertex: the line joining the vertex to the centroid of the opposite face is the
axis of rotation, and you can rotate through either°1@0240. These rotations

all have order 3, and correspond to the eight 3-cycles ii4Alt For each edge

of the tetrahedron there is a unique opposite egming the two vertices that

are not on the given edge The rotation through 180about the line joining

the midpoints of a pair of opposite edges is a symmetry. This gives three more
rotational symmetries. The identity is the 12th.
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How do we know that there are no more rotational symmetries? Certainly the
tetrahedron has some reflection symmetfigg, in fac). For example, the trans-
position (1, 2) corresponds to the reflection in the plane that is the perpendicular
bisector of the edge joining vertices 1 and(Rlote that vertices 3 and 4 lie in this
plane) Similarly, the other five transpositions in Sy#) correspond to reflections

in the planes that are the perpendicular bisectors of the other edges. Since every
symmetry of the tetrahedron must correspond to some permutation of the vertices,
the group of all symmetries must be some subgroup of @ymSo the order

of the group of all symmetries must be a divisor of 24. Since we have already
geometrically identified 18 symmetries, it follows that the symmetry group of the
tetrahedron is the whole of Syd). The six symmetries that we have not yet geo-
metrically identified correspond to the 4-cycles in S¥in(such ag(1,2, 3,4)). If

¢ is the line joining the midpoint of the edge 1-3 with the midpoint of the edge 2-4
then a rotation of 90about the axig followed by the reflection in the plane that

is the perpendicular bisector é6fis a symmetry of the tretrahedron corresponding

to a 4-cycle. The other 4-cycles arise similarly.

It is not quite clear that these 4-cycles cannot also be described as rotations in
some obscure way. To prove that they are definitely not rotations we need to
use some linear algebra. Any rotation Bf fixes all the points on some one-
dimensional subspace (the axis of rotation Let & be the plane through the
origin perpendicular to the liné. Then the rotation acts o’ like a rotation

of R?. If we now choose an orthonormal basis®f made up of one vector of
0 0

1
and two in#? then the matrix of the rotation has the for<m cosg sine) (where

0 sin6 cosf
0 is the angle of rotation Since this matrix has determinant 1, we conclude that

every rotation ofR® has determinant 1. A similar analysis can be used to show
that reflections have determinantl. And the transformations that correspond
to the 4-cycles also have determinanl, since they can each be described as
the product of one reflection and one rotation. To sum all this up, the 12 even
permutations in Syii#) (i.e. the elements of Al4)) correspond to rotational
symmetries, and these all have determinaft while the 12 odd permutations in
Sym(4) correspond to symmetries that have determinabt

It is also possible to use linear algebra to prove that the product of two rotations of
R3 is also a rotation, and from this it follows readily that the set of all rotational
symmetries of an object iR® is always a group. Note that symmetries with
determinant—1 cannot be physically performed on a rigid body in the ordinary
space in which we live; so it is perhaps debatable whether or not they should be

counted as “real” symmetries.
1 7 8
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The cube: Set up the group as
> C:=PermutationGroup< 8 | (1,2,3,4)(8,7,6,5), (2,4,6)(7,5,3)>;



3

(i)  Print the elements o€ and use the diagram of the cube to work out the
correspondence between rotations and permutations. Convince yourself that
C contains all possible rotations of the cube.

(i) As well as acting on the vertices of the cube the group acts on the four lines
through opposite pairs of vertices. To see that the group just permutes these
amongst themselves, type the following
> pairs := {1,8}°C;
> pairs;

To find the effect of the elements @ on these four pairs of vertices you
can type the following:

> £,G,K := Action(C,pairs);

In carrying out this commandiAGMA will construct a homomorphisnf
from C to the group of permutations of the getirs. For eachg € C, f(Q)

is the corresponding permutation. The gra@gs the image off and the
groupK is its kernel.

(iii) Check that the image of consists of all permutations of the four pairs and

that the kernel contains only the identity elementoflt can be shown that

a homomorphism whose kernel consists of the identity element only must be

one-to-one. Conclude that the group of rotations of the cube is isomorphic

to Sym(4).

(iv) If you look at the cube and think hard you should be able to see that there
are three pairs of opposite faces and that the rotations of the cube permute
these amongst themselves. In this part of the question you will construct a
homomorphism fronC to the group of permutations of these three pairs of
faces. Here is th&AGMA code.

> Set(C);

{ @, 2, 3, 0¢G,s, 7,6,
(1, 7, 5)(2, 4, 8),
(1, 3)(2, 4)(5, 7)(6, 8),
(1, 3, 5)(4, 8, 6),
(1, 4, 3, 2)(5, 6, 7, 8),
(1, 2, 5, 6)(3, 8, 7, 4),
(1, 6, 5, 2)(3, 4, 7, 8),
(1, 8)(2, 7)(3, 4)(5, 6),
(1, 42, 7@, 6)(5, 8),
(1, 2)(3, 6)(4, 5)(7, 8),
(1, 5, (2, 8, 4),
(2, 6, 4)(3, 5, 7),
(1, 5)(2, 6)(3, 7)(4, 8),
a1, 7, 32, 6, 8),
(1, 8)(2, 3)(4, 5)(6, 7),
(1, 5, 3)(4, 6, 8),
(1, 6)(2, 7)(3, 8)(4, b),
1d(C),
(1, 72, 8)(3, 5) (4, 6),
(1, 8)(2, 5)(3, 6)4, 7,
(1, 4, 7, 6)(2, 3, 8, 5),
(1, 3, M2, 8, 6),
(2, 4, 6)(3, 7, 5),

} (1,6, 7,42, 5,8, 3)

> faces := {{1,2,3,4},{5,6,7,8}}°C;

> print faces;

> f1,G1,K1 := Action(C,faces);

Check that the image of the homomorphism is the group of all permu-

tations of the three pairs of faces, and conclude that it is isomorphic to

Sym(3). Do you recognize the kernel?

Solution.

Given that the rotational symmetries of the cube form a group, it is easily seen that

The six permutations here that are products of two 4-cycles correspond®to 90
rotations (clockwise or anticlockwise about axes joining the middle points of
pairs of opposite faces. The I8@otations about these axes give the permuta-
tions(1,7)(4,6)(2,8)(3,5), (1,3)(2,4)(5,7)(6,8) and(1,5)(2,6)(3,7)(4,8). The

other six permutations that are the products of four disjoint transpositions corre-
spond to 180 rotations about axes that join midpoints of pairs of opposite edges.
For each of the four pairs of opposite vertices there are two rotational symmetries
of order 3: you can rotate clockwise or anticlockwise through°l&tibut the axis
joining the opposite vertices. This gives the eight permutations in the above list
that are products of two 3-cycles.

it has order 24. Imagine the cube placed on a desk. You can obviously rotate it
so that any chosen face becomes the uppermost face. Since the faces are squares,
there are then four possible rotations that leave the same face on top. This gives
us all possible orientations. So the total number of rotations is the number of
faces(six) times the number of rotations that fix a given fadeur). This same
argument applies to all the platonic solids: the order of the rotation group is the
number of faces times the number of sides of each face.

> C:=PermutationGroup<8 | (1,2,3,4)(8,7,6,5), (2,4,6)(7,5,3)>;
> #C;

24

> pairs := {1,8}°C;
> pairs;
GSet{
{3, 61,
{2,713,
{1, 8 1%,
} {4, 5%

We chose the numbering of the vertices so that 8, 7, 6 and 5 are opposite to 1,
2, 3 and 4 respectively. Since it is clear that a symmetry that takes viettex
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vertex ] must take the opposite ofto the opposite of, every rotational symmetry

of the cube gives rise to some permutation of the four pairs of opposite vertices.

The MAGMA command pairs := {1,8}"C definedpairs to be the set of all
pairs of the form{19,8%}, for g in the groupC; the above output confirms that
pairs = {{1,8},{2,7},{3,6},{4,5}}.

Let us writel = {1,8}, 2= {2,7}, 3= {3,6} and4 = {4,5}. It is easy to write
down the permutations of1,2, 3,4} corresponding to the 24 permutationsdn

For example,(1,2,3,4)(8,7,6,5) corresponds td1,2,3,4) and (1,7,5)(2,4,8)
corresponds td1,2,4). The MAGMA commandf,G,K:=Action(C,pairs) de-
fines £ to be exactly this function front to permutations of{1,2 3,4} (but

MAGMA has to write{1, 8} rather thanl, etc).

> f£,G,K := Action(C,pairs);

> f(Cc!(1,2,3,4)(8,7,6,5));
{3,6{4,5 {1,813} {2,7H
> f£(C'(1,7,5)(2,4,8));

{2, 7%, {4,57% {1,821}

The groupG, the image off, consists of all 24 permutations é1, 2, 3, 4}. That

is, every permutation of1, 2, 3,4} arises a< (c) for somec in C.

> Gy

Permutation group G acting on a set of cardinality 4
{3,6} {4,573 {1,8%} {2, 7hH
{3,6r {2, 7} {4,521

> #G;

24

> K;

Permutation group K acting on a set of cardinality 8

Order = 1

SinceG has the same number of elementasfollows that the mapping must
be one-to-one(In particular, there is only one element ©fthat gets mapped to
the identity permutation opairs. That is, the kernek has only one element.
SoC is isomorphic toG; that is,C is essentially just Sy(@).

> faces := {{1,2,3,4},{5,6,7,8}}°C;

> faces;
GSet{
{
{ 1’ 2’ 3, 4 },
5, 6, 7, 8
¥ { }
{ { 15 2: 5’ 6 }:
{3,4,7, 8}
1,
e {1, 4, 6, 7},
} { b 3’ 5’ 8 }
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> f1,G1,K1 := Action(C,faces);

> #G1;

6

> K1;

Permutation group K1 acting on a set of cardinality 8

Order = 4 = 272
(1, 3)(2, 4, 76, 8
(1, 72, 8)(3, 5)(4, 6)

> £(K1);

Permutation group acting on a set of cardinality 4
{3, 6 {1,802, 73} {4,511
{£3,6) {4, 5HDH2,7} {1,801

> Set(f(K1));

{

14(%$),

3,6 {1,8NH2,7} {4,521,

3,6 {2, 7HH1,813} {4,511,
} 3,6 {4,5DH2,7) {1,8D1

There are three pairs of opposite faces, and the géaup a group of permutations
of these three objects. SinGe has 6 elements, it must consist of all permutations
of the pairs of opposite faces. Sintetakes the 24 elements ofto the 6 elements
of G1, the mapf1 is certainly not one-to-one. In faat,is essentially Syit4) and

G1 is essentially Syit8), and£1 is the same homomorphism from permutations
of 4 things to permutations of three things that we described in lect{zes
Question 2 of Computer Tutorial 10The kernel of this homomorphism consists
of the identity and the three permutations in S#nthat are products of of two
disjoint transpositions. ThRIAGMA output above confirms thiset (f (K1) ) lists
the permutations of1, 2, 3,4} corresponding to elements &f, and we see that

they are id (3,1)(2,4), (3,2)(1,4), (3,4)(2,1).

The group of the tetrahedron is isomorphic to (Ajt and the group of the cube
is isomorphic to Syrtd). In fact it is possible to place two tetrahedra inside
the cube in such a way that the even permutations in (8yrix the tetrahedra
setwise and the odd permutations in Sfninterchange the two tetrahedra. The
two tetrahedra arg = {2,4,6,8} andt, = {1,3,5,7}.

(i)  Check that every element @f either leaved, in place or sends it tt,. Do
this with the followingMAGMA code.
> t1 := {2,4,6,8};
> for g in C do
for> ti’g;
for> end for;

(i) UseMAGMA to find the stabilizer of;,. That is,
> H := Stabilizer(C,t1);What is the order oH? Is this one of the
groups you have seen before? Which one?



Solution.

Two vertices of the cube are said to ddjacentif they are connected by an edge.

It is possible to colour the vertices black and white in such a way that adjacent
vertices are always oppositely coloured. Four of the eight vertices will be white

and four black; going diagonally across faces moves you between vertices of the
same colour.

Since symmetries take adjacent vertices to adjacent vertices, a symmetry that takes
a black vertex A to a white vertex B will take the white vertices adjacent to A to
the black vertices adjacent to B. It follows readily that such a symmetry must take
all the black vertices to white vertices and all the white vertices to black vertices.
And similarly a symmetry that takes one black vertex to a black vertex must take
all the black vertices to black vertices. Our numbering of the vertices is such
that the odd-numbered vertices are one colour and the even-numbered vertices the
opposite colour.

> t1 := {2,4,6,8}; {1, 3,5, 7%

> for g in C do {2, 4,6, 8%

for> ti1°g; {1, 3,5, 7%

for> end for; {2, 4,6, 8%

{2, 4, 6, 8% {1, 3,5, 7%

{1, 3,5, 7% {2, 4,6, 8%

{2, 4,6, 8% {1, 3,5, 7%

{1, 3,5, 7% > H := Stabilizer(C,t1);

{2, 4,6, 8% > #H;

{1, 3,5, 7%} 12

{2, 4,6, 8% > H;

{1, 3,5, 7% Permutation group H acting

{2, 4, 6, 8%} on a set of cardinality 8
{1, 3,5, 7} Order = 12 = 272 * 3

{2, 4,6, 8% (1, 3, (2, 8, 6)

{1,3,5, 7% (2, 6, 4)(3, 5, 7)

{2, 4, 6, 8% > f(H);

{1, 3,5, 7% Permutation group acting on

{2, 4,6, 8% a set of cardinality 4
{1, 3,5, 7% {3,6 {2, 7} {1,813}
{2, 4,6, 8% {3,6%} {4,532}, {2, 73}

The black vertices of the cube can be regarded as the vertices of a tetrahedron, the
edges of which run diagonally across the faces of the cube. The rotations of the

cube that take black vertices to black vertices are symmetries of this tetrahedron.

Of course, these same symmetries also take white vertices to white vertices, and
are thus also symmetries of the tetrahedron made up by the white vertices.

In the MAGMA output aboveH is the group of colour-preserving rotations ©f
Half the 24 elements of are inH. We know thatC is isomorphic to Syr(4),
andH is isomorphic to Alt4). The output above confirms that the isomorphism
takesH to the group generated by the 3-cycl@?2, 1) and (3,4,2), and (cf. Q1)
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this is the alternating group oft, 2, 3, 4}.
1

The Octahedron:
> 0:=PermutationGroup< 6 | (1,2,3)(4,6,5), (2,3,5,4)>;

(i)  Print out the elements dD and convince yourself that all rotations of the
octahedron are accounted for.

(i) What is the order 0D?

(i) Observe that if you put a vertex at the centre of each face, these eight new
vertices will describe a cube. Thus the groOpmust be isomorphic t&,
the group of rotations of the cube. Us®GMA to construct the action dD
on its faces:
> triples := {1,2,3}"°0;
> print triples;
> g, H, L := Action(0,triples);

Solution.

> 0:=PermutationGroup (1, 6)(2, 5),
<61(1,2,3)(4,6,5),(2,3,5,4)>; 1d(0),

> Set(0); (2, 5)(3, 4,

1 (2, 3, 5, 4),
(1, 6)(2, 3)4, 5), (1, 2, 4)(3, 6, 5),
(1, 4, 2)(@3, 5, 6), (1, 3, 6, 4),
(1, 52, 6)(, 4), 1, 9@, 5, 6),
(1,3, 2)(4, 5, 6), (1, 5, 4(2, 3, 6),
(1, 2,6, 5, (1, 4, 6, 3),
(1, 5, 32, 4, 6), (1, 5, 6, 2),
(1, 3)(2, b)(4, 6), (1, 3, 5)(2, 6, 4),
(1, 6)(2, 4)(3, 5), (1, 2, 3)(4, 6, 5),
(1, 2)(3, 46, 6), (1, 6)(3, 4)
(1, 4, 5)(2, 6, 3), }
(2, 4, 5, 3),

There are four pairs of opposite faces; rotations of°120d 240 about the axes
joining centroids of opposite faces are symmetries of the octahedron. This gives
the 8 elements of order 3 ib. There are three pairs of opposite vertices, giving
three axes for which there are rotations through &03d 270. This gives the six
rotations of order 4. Rotations through 28fbout these same three axes are also
symmetries: these correspond to the permutations that are products of two disjoint
2-cycles. There are 6 pairs of opposite edges, and for each pair there is a rotation
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through 180 about the axis through the midpoints of the two edges. Together
with the identity, this makes 24 rotations. Since the octahedron has 8 triangular
faces, this is in agreement with the formula stated in the solution to Q2 above: the
order of the group is the product of the number of faces and the number of edges
of each face. As with the group there are 8 elements of order 3, 6 of order 4
and 9 of order 2, three of these 9 being the squares of the elements of order 4. As
explained in the questiom, is in fact isomorphic tcC.

> #0;

24

> triples := {1,2,3}°0;
> print triples;

GSetq{
{3, 5, 61,
{1, 3, 51},
{2, 3,613,
{1, 4, 51},
{1, 2, 313,
{2, 4, 6 %},
{1, 2, 413,
{4, 5,61}

}

> g, H, L := Action(0,triples);

> H;

Permutation group H acting on a set of cardinality 8
({3,5,6},{1,4,5},{2,4,6}) ({1,3,5},{1,2,4},{2,3,6})
({3,5,6},{4,5,6},{2,4,6},{2,3,6}) ({1,3,5},{1,4,5},

{1,2,4},{1,2,3})

> #H;

24

> L;

Permutation group L acting on a set of cardinality 6
Order = 1

The set{1, 2,3} corresponds to one of the faces of the octahedron,tangles

is defined to be the set of everything obtained frfin2, 3} by a rotation of the
octahedron. Sariples is the set of all faces of the octahedron. It is easy to use
the diagram to check thatAGmA’s list of the elements ofriples is correct.

The aboveMAGMA code defineg to be a homomorphism from onto H, which

is a group of permutations ofriples, the set of faces the octahedron. The
homomorphism is an isomorphism singdas the same number of elementDas
This also means that the kerrieimust have order 1.

We can associate the faces of the octahedron with the vertices of the cube as
follows: {1,2,3} < 1, {1,3,5} — 2, {1,5,4} — 3,{1,4,2} — 4, {6,5,4} < 8,
{6,4,2} <~ 7,{6,2,3} — 6, {6,3,5} — 5. The generatorsAGMA gave forH

above correspond exactly to the generators we gave,fshowing thatd and C

are isomorphic.
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The Dodecahedron and Icosahedron:

> I:=PermutationGroup<12
(2,3,4,5,6)(11,10,9,8,7), (1,6,9,8,3)(12,7,4,5,10)>;

> D:=PermutationGroup<20
(1,2,3,4,5)(10,9,8,7,6)(11,12,13,14,15) (20,19,18,17,16) ,
(2,5,9)(3,10,15) (4,14,8)(6,18,11) (7,13,17) (12,19,16)>;

(i) The icosahedron and the dodecahedron dual in that you can get one
from the other by putting a vertex in the centre of each face. Therefore they
have the same group of rotations. Check the order of each group to get a
first indication of this. What other groups of this order have you met in this
course?

(i) Not all the vertices are visible in the diagrams. Can you work out the
numbering of the hidden facegMint. Use the group to find the images of
one of the faces you can see, following the steps of the previous quéstion.

(i) The dodecahedron has 20 vertices and it turns out that you can divide these
up into five lots of four so that each set of four is a tetrahedron. There are
two ways to do this. One of them is given as follows:
> tetra := {1,6,11,18}°D;
> tetra;

You should find that there are five setstiatra. This means thaD per-
mutes these 5 tetrahedra. In fagtis the alternating group of this set of 5
tetrahedra. Can you explain why this is so?

Solution.

> I:=PermutationGroup<12 | (2,3,4,5,6)(11,10,9,8,7),

(1,6,9,8,3)(12,7,4,5,10)>;

> D:=PermutationGroup<20 |
(1,2,3,4,5)(10,9,8,7,6)(11,12,13,14,15) (20,19,18,17,16),

(2,5,9)(3,10,15) (4,14,8)(6,18,11) (7,13,17) (12,19,16)>;

> #D;

60

> #I1;

60

Our numbering of the 20 vertices of the dodecahedron can be described as follows.
On one of the faces the vertices are numbered 1,2,3,4,5 in anticlockwise order.
There is another face containing the edge joining vertices 1 and 2. The vertices
on this face are 2,1,9,15{@lso in anticlockwise ordégr The full list of faces(all
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given in anticlockwise orderis as follows:

1,2,3,4,5 21,9,158 32,8117 4,3,7,12,6
5,4,6,13,10 1,5,10,14,9 159,14,18,17 118151716
12,7,11,16,20  136,12,20,19  1410,13,19,18 1617181920

Numbers on opposite vertices add up to 21.

The 12 vertices of the icosahedron are numbered in accordance with the following
description. The five vertices adjacent to vertex 1 are 2,3,4&n6iclockwise.

Opposite vertices add up to 13; so the vertices adjacent to vertex 12 are 11,10,9,8,7.

The faces are as follows:

1,2,3 1,3,4 1,4,5 1,5,6 1,6,2
2,8,3 37,4 4,115 5,10, 6 6,9,2
2,9,8 38,7 4,7,11 511,10 6,10,9
12,7,8 1289 129,10 121011 12117

The groupsI andD must be isomorphic since the icosahedron and the dodeca-
hedron are dual to one another. They have 60 elements. The alternating group
Alt(5) also has 60 elements, and in facandD are isomorphic to A(f5).

> tetra := {1,6,11,18}°D;

> tetra;
GSet{
{2, 10, 12, 17 },
{ 4, 8, 14, 20 %,
{5, 7, 15, 19 },
{3, 9, 13, 16 1},
{1, 6, 11, 18 }
}
> k,M,N := Action(D,tetra);
> k;
Mapping from: GrpPerm: D to GrpPerm: M
> M;

Permutation group M acting on a set of cardinality 5
({2,10,12,17},{3,9,13,16},{4,8,14,20},{5,7,15,19},{1,6,11,18})
({2,10,12,17},1{5,7,15,19},{3,9,13,16})

> #M;

60

> N;

Permutation group N acting on a set of cardinality 20

Order = 1

The homomorphisnx constructed here tak@sontoM, a group of permutations of
the five tetrahedra. Sinae has the same number of elementsbathey must be
isomorphic.

In order to properly understand this isomorphism, it is necessary to study a real
dodecahedron, not just a picture. The five tetrahedra can be described as follows.
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Imagine an insect that crawls along the edges of the dodecahedron. Since three
edges meet at each vertex, when the insect reaches a vertex it will have a choice
of two edges to crawl along nexassuming it doesn't turn roufd it can take

the left fork or the right fork. Suppose now that the insect starts at vertex A,
crawls along an edge to an adjacent vertex, turns to the right and crawls to the
next vertex, then turns to the left, crawls along one more edge and then stops.
Call the vertex it reaches like this vertex B. Now suppose the insect returns to
vertex A and repeats the process, but chooses a different edge leading from A
to start with. Call the vertex it reaches C. And starting again from A, take the
third edge leading from A and repeat the proced(iten right at the first fork,

left at the secondto reach vertex D. Then A, B, C and D are the vertices of

a regular tetrahedron. Any symmetry of the dodecahedron will clearly take a
tetrahedron found by the above procedure to another one. Since it turns out that
there are precisely five such tetrahedra, the gmuygermutes these five objects.
Using the classification of rotational symmetries of the regular tetrahehea

Q1) it is not hard to see that there is no rotation®t apart from the identity

that preserves all five of these tetrahedra. Sibdeas order 60, it follows that

we obtain 60 distinct permutations of the five tetrahedra. It can be shown that
Alt(5) is the only subgroup of Sy(B) with 60 elements; sd must be isomorphic

to Alt(5). Alternatively, one can check directly that the generator® gfve rise

to even permutations ofetra. The MAGMA function Sign returns+1 for even
permutations and-1 for odd permutations.

> x:=D!(1,2,3,4,5) (10,9,8,7,6) (11,12,13,14,15) (20,19,18,17,16) ;
> y:=D!(2,5,9)(3,10,15) (4,14,8) (6,18,11) (7,13,17) (12,19,16) ;

> k(x);
({2,10,12,17},{3,9,13,16},{4,8,14,20},{5,7,15,19},{1,6,11,18})
> Sign(k(x));

1

> k(y);

{2,10,12,17}%,{5,7,15,19},{3,9,13,16})

> Sign(k(y));

1

The elements andy generated. The isomorphisnk takes them to permutations

of tetra that are(repectively a 5-cycle and a 3-cycle. Since 5-cycles and 3-
cycles are both even, and products of even permutations are even, all things in the
group generated by andy will also give rise to even permutations tétra. So

D is isomorphic to a group of even permutations of the set 5-elementeset,

and since B = 60, it is isomorphic to the whole of Af5).



