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Computer Tutorial 8

The following commands have been introduced in previous tutorials: Sym, Alt,
Order, #, forall, exists, sub< G | . . . >, PermutationGroup< n | . . . >, Set,
Stabilizer, diff, meet, join, for . . . do . . . end for, if . . . then . . . end if.

1. (i) The MAGMA command
F := PermutationGroup< 5 | (1,2,3,4,5), (1,2) >;
creates the smallest group of permutations of the set {1, 2, 3, 4, 5} that
contains (1, 2, 3, 4, 5) and (1, 2). How many permutations are there in F?
And how many permutations of {1, 2, 3, 4, 5} exist that are not in F?

(ii) Suppose that the vertices of a regular pentagon are numbered 1, 2, 3, 4, 5.
Draw a diagram, and use it to find a permutation a that corresponds to a
rotation symmetry of the pentagon, and a permutation b that corresponds
to a reflection symmetry. In MAGMA, define D to be the smallest group
of permutations containing your permutations a and b. Check that D has
order 10. (It is called the dihedral group of order 10.)

(iii) The alternating group of degree n consists of all even permutations of
the numbers 1, 2, . . . , n. The MAGMA command A := Alt(5) creates the
alternating group of degreee 5. After doing this, use the command
print D subset A;
to find out whether all the elements of D are even.

(iv) Find all the cosets of D in A. Label them D1, D2, . . . . How many do
you expect? (Make sure that your list D1, D2, . . . does not contain any
repetitions.)

(v) For each pair of distinct cosets, find out how many elements they have in
common. (If X and Y are sets, their intersection is given by X meet Y.)

(vi) To see the elements of A use the command
print Set(A);
Choose any element of A and call it y. Now create some new sets
E1 := { d*y : d in D1 };
E2 := { d*y : d in D2 };

....
and then check that the sets E1, E2 etc. are just the cosets D1, D2, etc. in
some order.
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(vii) Choose two of your cosets—say D2 and D3—and create the set
E := { x*y : x in D2, y in D3 };
Do you expect E to be a coset of D? (First check its size.) Try this again
with other cosets in place of D2 and D3.

Solution.

The group F contains all 120 permutations of 1, 2, 3, 4, 5.

> F:= PermutationGroup< 5 | (1,2,3,4,5), (1,2) >;
> #F,#Sym(5);
120 120
> F eq Sym(5);
true

If the vertices of the regular pentagon are labelled 1, 2, 3, 4, 5 (cyclically)
then a = (1, 2, 3, 4, 5) is a rotation symmetry and b = (2, 5)(3, 4) a reflection
symmetry. (Other choices are possible: for example, (1, 3, 5, 2, 4) is a rotation
and (1, 4)(2, 3) a reflection.) The permutation group generated by a and b
has order 10. Its elements correspond to the five rotation symmetries and five
reflection symmetries of the pentagon. (See also Tutorial 7, Question 2.)

The 10 elements of D all lie in the group A = Alt(5), which has order 60. So
D is a subgroup of A, and the index of D in A is 60/10 = 6. That is, there are
6 cosets of D in A.
> A:=Alt(5);
> D:=PermutationGroup
<5|(1,2,3,4,5),(1,4)(2,3)>;
> #A,#D;
60 10
> D subset A;
true
> D1:=Set(D);
> Others:=Set(A) diff D1;
> c:=Random(Others);
> c;
(1, 4, 3)
> D2:={x*c : x in D};
> Others:=Others diff D2;
> d:=Random(Others);
> d;
(2, 4, 5)
> D3:={x*d : x in D};
> Others:=Others diff D3;
> e:=Random(Others);

> e;
(1, 3, 4, 5, 2)
> D4:={x*e : x in D};
> Others:=Others diff D4;
> f:=Random(Others);
> f;
(1, 4, 3, 5, 2)
> D5:={x*f : x in D};
> Others:=Others diff D5;
> g:=Random(Others);
> g;
(1, 2, 5, 4, 3)
> D6:={x*g : x in D};
> D6 eq Others;
true
> #D1,#D2,#D3,#D4,#D5,#D6;
10 10 10 10 10 10
> Set(A) eq (D1 join D2 join D3
> join D4 join D5 join D6);
true

According to MAGMA, the six sets D1 . . . D6 each have 10 elements, and their



3

union is the whole Set(A), which has 60 elements. So they must be disjoint
from each other. But rather than simply trusting MAGMA, the student should
do at least some calculations by hand and check that the answers agree with
MAGMA’s.
We can get MAGMA to choose elements of A randomly, form the corresponding
right cosets of D, and check that the result is always one of D1, D2, . . . , D6.

> z:=Random(A);
> z;
(1, 4, 3, 2, 5)
> E:={x*z : x in D};
> E;
{

(2, 3)(4, 5),
(1, 2, 3),
(2, 4)(3, 5),
(1, 5, 4),
(1, 3, 5),
(1, 4, 2),
(1, 5, 2, 4, 3),
(1, 4, 3, 2, 5),
(1, 3, 4, 5, 2),
(1, 2, 5, 3, 4)

}
> E in {D1,D2,D3,D4,D5,D6};
true
> z:=Random(A);
> z;
(1, 3, 4, 2, 5)
> E:={x*z : x in D};
> E in {D1,D2,D3,D4,D5,D6};
true
> z:=Random(A);
> z;
(2, 5, 4)
> E:={x*z : x in D};
> E;
{

(1, 3, 4),
(1, 4, 5),
(1, 2, 4, 5, 3),
(1, 2, 3, 5, 4),
(2, 4, 3),
(1, 3)(2, 5),
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(1, 5)(2, 3),
(2, 5, 4),
(1, 4, 3, 5, 2),
(1, 5, 3, 4, 2)

}
> E in {D1,D2,D3,D4,D5,D6};
true

If X, Y are subsets of a group G then we define XY = {xy | x ∈ X, y ∈ Y }.
If X = Hg1 and Y = Hg2 are cosets of the subgroup H then it may or may
not happen that (Hg1)(Hg2) is also a subgroup of H. Note that since g1 ∈ Hg1

and g2 ∈ Hg2 it is always true that g1g2 ∈ (Hg1)(Hg2). So if (Hg1)(Hg2) is
a coset of H then it must be the coset that contains g1g2, namely Hg1g2. It is
reasonably easy to show that (Hg1)(Hg2) = Hg1g2 if and only if Hg1 = g1H.
Certain subgroups, known as normal subgroups, satisfy this for all elements
g1 ∈ G. However, the group D in our current MAGMA example is not a normal
subgroup, and in fact Dx is not equal to xD unless x happens to be in D. So it
turns out that D1Di=Di, for each possible value of i, but if j 6= 1 then DjDi is
not one of the cosets. In fact, all these products turn out to have 50 elements.

> E:={x*y : x in D2, y in D3};
> #E;
50
> E:={x*y : x in D2, y in D2};
> #E;
50
> E:={x*y : x in D4, y in D6};
> #E;
50
> E:={x*y : x in D1, y in D6};
> #E;
10
> E eq D6;
true
> E:={x*y : x in D5, y in D5};
> #E;
50

2. Create the permutation group G as follows:
G<x,y,z> := PermutationGroup< 9 | (4, 7, 8)(5, 9, 6),

(3, 6, 9, 4, 5, 7, 8), (1, 3, 2)(4, 7, 8)(5, 6, 9) >;
The variables x, y and z will become the given generators. To see this, type
print x,y,z;

(i) Is G a subgroup of the alternating group Alt(9)? You should be able to
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answer this without using MAGMA. Or you could use the command print
IsEven(x) to check each of the generators. Or, then again, you could use
the command print G subset Alt(9);.

(ii) What is the order of G?

(iii) Does the order of G divide #Alt(9)? What is the reason for this?

(iv) How many cosets of G are there in Alt(9)?

(v) Let K be the stabilizer in G of the set X = {1, 2, 3}. That is, K consists
of the elements g ∈ G such that 1g, 2g and 3g are 1, 2 and 3 in some order.
Use MAGMA to find K by typing
K := Stabilizer(G,{1,2,3});

What is the order of K?

(vi) Find the stabilizers of a few other subsets of {1, 2, . . . , 9}. Check that the
order of every subgroup you find divides the order of G.

(vii) Does G have a subgroup of order 5? If there is one, find an example; if
not, explain why.

(viii)Does G have a subgroup of order 4? If there is one, find an example; if
not, explain why.

(ix ) Does G have a subgroup of order 16? If there is one, find an example; if
not, explain why.

Solution.

Cycles of odd length are even permutations. In general, a permutation is odd if
and only if it has an odd number of cycles of even length. The generators of G
do not involve an even length cycles; so they are all even. So G is contained in
the alternating group.

> G<x,y,z> := PermutationGroup< 9 | (4, 7, 8)(5, 9, 6),
> (3, 6, 9, 4, 5, 7, 8), (1, 3, 2)(4, 7, 8)(5, 6, 9) >;
> G;
Permutation group G acting on a set of cardinality 9

(4, 7, 8)(5, 9, 6)
(3, 6, 9, 4, 5, 7, 8)
(1, 3, 2)(4, 7, 8)(5, 6, 9)

> G subset Alt(9);
true
> #G;
1512
> #Alt(9)/#G;
120
> K:=Stabilizer(G,{1,2,3});
> #K;
18
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> #G/#K;
84
> #{{1,2,3}^g : g in G};
84
> (9*8*7)/(3*2*1);
84
> L:=Stabilizer(G,{1,2});
> #L;
42
> #G/#L;
36
> #{{1,2}^g : g in G};
36
> (9*8)/(2*1);
36
> M:=Stabilizer(G,{1,2,3,4});
> #M;
12
> #G/#M;
126
> #{{1,2,3,4}^g : g in G};
126
> (9*8*7*6)/(4*3*2*1);
126
> Stabilizer(G,{5,6,7,8,9}) eq M;
true
> Stabilizer(G,{4,5,6,7,8,9}) eq K;
true
> Stabilizer(G,{3,4,5,6,7,8,9}) eq L;
true

There are some general facts to note. The stabilizer of a set is always a subgroup.
The order of a subgroup of a group is always a divisor of the order of the group:
the ratio is called the index of the subgroup. The index of the stabilizer of a
set S is equal to the total number of distinct sets you can get by acting on S
by elements of the group. Thus, since the stabilizer of {1, 2, 3} has index 84
there are 84 distinct sets of the form {1g, 2g, 3g}, for g in the group G. Each
one of these sets occurs for 18 different values of g; this accounts for all elements
of G, since 84 × 18 = 1512. As it happens, the number of 3-element subsets of
{1, 2, 3, 4, 5, 6, 7, 8, 9} is 84, since

(
9
3

)
= 9×8×7

3×2×1 = 84; so in fact you can get all of
these subsets by applying elements of G to {1, 2, 3}. And so if S1 and S2 are any
3-element subsets then there exists an element x ∈ G with Sx

1 = S2: indeed, if
g, h ∈ G are such that S1 = {1g, 2g, 3g} and S2 = {1h, 2h, 3h}, then x = g−1h
has the desired property.
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Similarly, the index of the stabilizer of {1, 2} is 36; so there are 36 distinct sets
of the form {1g, 2g} with g ∈ G. Each set occurs for 42 different values of g, in
agreement with the fact that 36×42 = 1512. By chance it is again true that the
36 sets of the form {1g, 2g} are all the 2-element subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9},
since

(
9
2

)
= 36.

Similarly again, the index of the stabilizer of {1, 2, 3, 4} is 126; so there are
126 distinct sets of the form {1g, 2g, 3g, 46}, with g ∈ G. Each set occurs for
12 different values of g, in agreement with the fact that 126 × 12 = 1512.
Remarkably, it is again true that all 4-element subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9}
are obtained like this,

(
9
4

)
happens to equal 126.

The number of 5-element subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9} is the same as the
number of 4-element subsets, because the complement of a 5-element subset is
a 4-element subset. Because you can get any 4-element subset from any other
4-element set by applying a suitable element of G, you can get any 5-element
set from any other by applying a suitable element of G (since if x takes S1 to
S2 then it also takes the complement of S1 to the complement of S2.

Similarly, the fact that you can get any 3-element set from any other by an
element of G means that you can get any 6-element set from any other by an
element of G. And you can get any 7-element set from any other by an element
of G, for the same kind of reason.

Since #G is not divisible by 5 or by 16, G does not have any subgroup of order 5
or 16. It could have a subgroup of order 4, though. In fact there is a theorem
that says that if the order of a group G is divisible by some number that is a
power of a prime, then that number is the order of some subgroup of G. Since
4 is a divisor of 1512 and also a power of the prime number 2, there must be a
subgroup of order 4. We have already found a subgroup of order 12, and that
subgroup will have to have a subgroup of order 4. So let us start by printing
out the elements of a subgroup of order 12.

> Set(M);
{

(2, 4, 3)(5, 9, 8),
(1, 2, 4)(6, 9, 8),
(1, 4)(2, 3)(5, 9)(6, 8),
(1, 2, 3)(5, 6, 9),
(1, 3)(2, 4)(5, 6)(8, 9),
(1, 3, 4)(5, 8, 6),
(1, 3, 2)(5, 9, 6),
(1, 4, 2)(6, 8, 9),
(1, 2)(3, 4)(5, 8)(6, 9),

8

(1, 4, 3)(5, 6, 8),
Id(M),
(2, 3, 4)(5, 8, 9)

}
> N:=sub<M | {g: g in M | Order(g) eq 2}>;
> N;
Permutation group N acting on a set of cardinality 9

(1, 2)(3, 4)(5, 8)(6, 9)
(1, 4)(2, 3)(5, 9)(6, 8)
(1, 3)(2, 4)(5, 6)(8, 9)

> Set(N);
{

Id(N),
(1, 2)(3, 4)(5, 8)(6, 9),
(1, 4)(2, 3)(5, 9)(6, 8),
(1, 3)(2, 4)(5, 6)(8, 9)

}

You can tell the order of a permutation quickly by looking at the lengths of
its cycles. In fact, the order is the least common multiple of the lengths of the
cycles. So it is easy to see that 8 of the elements of the 12-element group M
have order 3. No element of order 3 can belong to a subgroup of order 4; so the
subgroup of order 4 that we are looking for must consist of exactly the elements
of M that do not have order 3.


