THE UNIVERSITY OF SYDNEY

MATH2008 Introduction to Modern Algebra
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2008/)

Semester2, 2003 Lecturer: R. Howlett

Computer Tutorial 3

The purpose of this tutorial to learn how to use MAGMA in computations with
subspaces of vector spaces, how to use MAGMA to solve matrix equations, and how
to use matrices to calculate projections.

The main MAGMA commands in this tutorial are:
sub KMatrixSpace Transpose Solution NullSpace

It is recommended that you set a log file at the start of each MAGMA session to
keep a record of your work. e.g. SetLogFile("ctut3.mlg");. (Don’t forget the
semicolon!)

To save you some typing, a file called t3defs.m has been created containing the
following MAGMA code:

() Convert the orthogonal set you found in Part (i) into an orthonormal

Length := func< u | Sqrt(InnerProduct(u,u)) >;
Angle := func< u,v | Arccos(InnerProduct(u,v)

/ (Length(u)*Length(v))) >;
func< x | x*180/Pi(RealField()) >;
func< Q, v | Solution(A*B,v*B)*A
where B is Transpose(A)
where A is BasisMatrix(Q) >;

asDegree
Projection :

one.
Solution.
> R := RealField();
> V := VectorSpace(R,5);
> al :=V![1,1,1,0,0];
> a2 :=V![1,0,-1,0,-1];
> a3 :=V![2,-1,1,1,0];
> a4 :=V!'[4,0,0,1,-1];
> ul := ail;
> u2 := a2 - Projection(sub< V | ul >, a2);
> u3 := a3 - Projection(sub< V | ul,u2 >, a3);
> u4 := a4 - Projection(sub< V | ul,u2,u3 >, a4);
> print ul, u2, u3, ué4;
(11100
(10-10-1)
(1-5/32/311/3)
(1/8 1/8 -1/4 1/8 3/8)
> ul := ul/Length(ul);
> u2 := ul/Length(u2);
> u3 := ul/Length(u3);
> u4 := ul/Length(ud);
> print ul;
> (0.57735..,0.57735..(eto)

To get MAGMA to read this file, use the command load "t3defs.m";.(Incidentally,
you can do this kind of thing for yourself. If you create a file containing lines of
MAGMA commands, called MyDefinitions.m (say), you can get MAGMA to execute
these commands by typing load "MyDefinitions.m"; at the MAGMA prompt.
You can use NEDIT to create such a file.)

If V is a vector space, and a, b, ¢ (etc.) are vectors in V, then (for example)
the command W:=sub< V | a,b,c >; creates the subspace of V spanned by a, b,
and c.

1. (i) Apply the Gram-Schmidt process to the vectors
(1,1,1,0,0), (1,0,—1,0,—1), (2,—1,1,1,0), (4,0,0,1, —1).

(First define V as a vector space of dimension 5 over the real field and
enter the above vectors as al to a4. Then get MAGMA to compute v1
to v4, where vl = al, and for i > 1 the vector vi is ai minus the
projection of ai onto the subspace spanned by the earlier v’s. You will
need to use MAGMA commands like v3:=a3 - Projection(sub< V |
vi,v2 >, a3);.)

2. Find an orthonormal set of vectors by applying the Gram-Schmidt process to

(1707070’050)7 (17 1’0’05070)’ (1’ 1717070’0)’ (171717 1’050)'

Solution.

The answer is (1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0);
these vectors already have length 1, as required for an orthonormal basis.

> R := RealField();

> V := VectorSpace(R,6);

> al :=V![1,0,0,0,0,0];

> a2 :=V!I[1,1,0,0,0,0];

> a3 :=VI[1,1,1,0,0,0];

> a4 :=VI[1,1,1,1,0,0];

> ul := al;

> u2 := a2 - Projection(sub< V | ul >, a2);

> u3 := a3 - Projection(sub< V | ul,u2 >, a3);

3

> u4 := a4 - Projection(sub< V | ul,u2,u3 >, a4);
> ul, u2, u3, u4;

(100000)

(01 0000)

(001000

(000100

> Length(ul);
.00000000000000000000000000000000000000
Length(u2);
.00000000000000000000000000000000000000
Length(u3) ;
.00000000000000000000000000000000000000
Length(uéd) ;
.00000000000000000000000000000000000000

= VBV R Ve

The nullspace of an m X n matrix A is usually defined to be the space of
all n-component column vectors v such that Av = 0. Since MAGMA uses row
vectors, the MAGMA function NullSpace returns the space of all m-component
row vectors v such that vA = 0. We shall call this the left nullspace of A, and
the usual nullspace of A the right nullspace of A. Use MAGMA to find the left
nullspace of

1 -1
2 =2
5 =5

How can you use MAGMA to find the right nullspace of the same matrix?

Solution.

4

4. (4) Find the projection of v = (3, —2,4) onto W = { (z,y, 2) | 2z—y+32 =0},
a subspace of (R3)’.
(Observe that W consists of the solutions of the equation
2
(x,y,2) | =1 | =0.
3
The sequence of MAGMA commands
M := KMatrixSpace(RealField(),3,1);
A = M'[2,-1,3];
W := NullSpace(A);
will create W for you.)
(7) Geometrically, what is the space W from Part ()7 (This is not a computer
question!)
(#4) Find an orthogonal matrix whose first row is ﬁ(?, —1,3). (Hint. The
2nd and 3rd rows must form an orthonormal basis for the space W in Part (4).)
Solution.

We have already declared R to be the real field in our answer to Exercise 1.
So we do not have to do that now.

For Part (i):

> M32 := KMatrixSpace(R,3,2);

> S := M32![1,-1,2,-2,5,-5];

> NullSpace(S);

Vector space of degree 3, dimension 2 over Real Field
Echelonized basis:

(10 -1/5)

(01 -2/5)

> // This gives the left nullspace. The right nullspace is the
> // transpose of the left nullspace of the transpose of S.
> NullSpace(Transpose(S));

Vector space of degree 2, dimension 1 over Real Field
Echelonized basis:

(1 1)

So the right nullspace of S has dimension 1 and is spanned by (1)

I hope that you can see immediately that this is true without using MAGMA
(or even a pen and paper).

> V := VectorSpace(R,3);

> v :=V![3,-2,4];

> M := KMatrixSpace(R,3,1);
> A :=M'[2,-1,3];

> W := NullSpace(A);

> W;

Vector space of degree 3, dimension 2 over Real Field
Echelonized basis:

(10 -2/3)

(011/3)

> Projection(W,v);

/7 -4/7 -2/7)

(7i) The equation 2z — y + 32z = 0 defines a plane in R3. Observe that
22 —y+3z is the dot product of the vectors z = (z,y, 2)T and u = (2, -1, 3)T.
Thus point whose position vector (relative to the origin) is z lies in the plane
2z —y—+3z = 0 if and only if z-u = 0; that is, if and only if z is perpendicular
to u. So the space W is the plane through the origin orthogonal to (2, —1,3)7".
(ii1) Observe that if u = (2,—1,3), then |Ju|| = V22 +12+32 = V14. So
the given vector is (1/|lu||)u, the unit vector in the direction of u. The other
rows of the desired matrix must therefore be orthogonal to u, and hence in the

subspace W. Indeed, they must form an orthonormal basis of W. Moreover,
any orthonormal basis of W will do. So we can get a solution by applying the
Gram-Schmidt process to the echelonized basis of W that MAGMA has already
found for us, and then normalizing the resulting basis vectors.

> V := VectorSpace(R,3);
>u :=V![2,-1,3];

> wl := VI[1,0,-2/3];

> w2 :=V![0,1,1/3];

> w2 := w2-(InnerProduct(w2,wl)/InnerProduct(wl,wl))*wl;
> u := u/Length(u);

> wl := wl/Length(wl);

> w2 := w2/Length(w2);

> MM := KMatrixSpace(R,3,3);

> A := MM![u,wl,w2];

> A;

> [0.534522483824848769369106961759507043105

> -0.267261241912424384684553480879753521552

> 0.801783725737273154053660442639260564658]

> [0.832050294337843683027512600185499064521 0.E-38
> -0.554700196225229122018341733456999376343]

> [0.1482498633322202358851681935329180766188

> 0.9636241116594315332535932579639674980323473581330492206446
> 0.2223747949983303538277522902993771149322117556005851765654]

This is a good approximation to the correct solution

2 =1 3
Via V14 V14
A= -3 0 =2
- V13 V13
2 V13 3
V182 V14 182

There are many other correct answers, since the space W has many orthonor-
mal bases.

(Harder) In this exercise we shall use MAGMA to construct a function called
orthog. When given a row vector v, the orthog function will return the space
of row vectors orthogonal to v.

First of all, the function is going to look something like
orthog := func< v | W >;
where W is the subspace we want.

We know that a row vector z is orthogonal to the row vector v if and only
if v = 0. In matrix terms this can be written as zv” = 0. In other
words the vectors z form the left nullspace of v” (which is a column vec-
tor regarded as a matrix). Thus in MAGMA we could try to define W as
NullSpace(Transpose(v)). This doesn’t work because MAGMA will know

6

that v is a vector, but it can only transpose matrices, and does not regard
vectors as matrices. Therefore we have to coerce MAGMA into thinking of v
as a 1 X n matrix, where n is the dimension of the vector space in which v
lives. If M is the space of 1 X n matrices we can get what we want by writing
NullSpace(Transpose(M!v)). Thus the orthog function will actually look
like

orthog := func< v | NullSpace(Transpose(M!v)) >;

If we type this in and try it out, MAGMA will complain and tell us that the
identifier M has not been declared. That is because we haven’t yet told it
about M. We can fix this by adding a where clause of the form

where M is KMatrixSpace(R,1,n)

This is all very well, but now what is R, and how do we tell MAGMA what n
is? Well, if V is the vector space in which v lives, R is its field of scalars and
n is its dimension. So the where clause should really be

where M is KMatrixSpace(Field(V),1,Dimension(V))

But we need yet another where clause to tell MAGMA about V. This is easy
because V is the vector space that contains v, and MAGMA calls this the parent
vector space of v. So what we have to say is

where V is Parent(v)
Putting all this together our function becomes
orthog := func< v | NullSpace(Transpose(M!v))
where M is KMatrixSpace(Field(V),1,Dimension(V))

where V is Parent(v) >;

To test this out, try it on the vector (2,—1,3) used in Exercise 4.

Solution.

> orthog := func< v | NullSpace(Transpose(M!v))

> where M is KMatrixSpace(Field(V),1,Dimension(V))
> where V is Parent(v) >;

> V := VectorSpace(R,3);

> orthog(V![2,-1,3]);

Vector space of degree 3, dimension 2 over Real Field
Echelonized basis:

(10 -2/3)

(011/3)

