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Assignment 2

1. Let y = (1, 2, 3)(4, 5) and z = (1, 4)(2, 5, 3), permutations in Sym(5). Find
six distinct permutations x ∈ Sym(5) such that x−1yx = z.

Solution.

Given that y = (1, 2, 3)(4, 5), it follows that x−1yx = (1x, 2x, 3x)(4x, 5x) (for
any x ∈ Sym(5)). This was explained in the solutions to Computer Tutorial 6.
The point is that

(1x)x−1yx = 1xx−1yx = 1yx = (1y)x = 2x,

since y takes 1 to 2, and by similar calculations

(2x)x−1yx = 2yx = 3x,

(3x)x−1yx = 3yx = 1x,

(4x)x−1yx = 4yx = 5x,

(5x)x−1yx = 5yx = 4x.

We want x−1yx = z; so these equations become (1x)z = 2x, (2x)z = 3x,
(3x)z = 1x, (4x)z = 5x and (5x)z = 4x. Thus the numbers 1x, 2x and 3x

form a 3-cycle in z, while 4x and 5x form a 2-cycle. Indeed, z must equal
(1x, 2x, 3x)(4x, 5x). But z = (1, 4)(2, 5, 3), so (4x, 5x) must equal (1, 4) and
(1x, 2x, 3x) must equal (2, 5, 3). This means that 4x is either 1 or 4, and 5x

is either 4 or 1. Similarly 1x, 2x, 3x are 2, 5, 3; it does not matter which
is which, but the cyclic ordering must be right. Thus Thus if 1x = 2, then
2x = 5 and 3x = 3, while if 1x = 5 then 2x = 3 and 3x = 2, and if 1x = 3
then 2x = 2 and 3x = 5. So 2 possibilities for 4x and 5x multiplied by 3
possibilities for 1x, 2x and 3x makes 6 possibilities for x altogether. They are
as follows:

4x = 1, 5x = 4
1x = 2, 2x = 5, 3x = 3

giving x = (1, 2, 5, 4);
4x = 1, 5x = 4

1x = 5, 2x = 3, 3x = 2

giving x = (1, 5, 4)(2, 3);
4x = 1, 5x = 4

1x = 3, 2x = 2, 3x = 5

giving x = (1, 3, 5, 4);
4x = 4, 5x = 1

1x = 2, 2x = 5, 3x = 3
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giving x = (1, 2, 5);
4x = 4, 5x = 1

1x = 5, 2x = 3, 3x = 2

giving x = (1, 5)(2, 3);
4x = 4, 5x = 1

1x = 3, 2x = 2, 3x = 5

giving x = (1, 3, 5). It is a routine matter of multiplying permutations to
check that

(1, 3, 5, 4)−1(1, 2, 3)(4, 5)(1, 3, 5, 4) = (1, 4)(2, 5, 3),

((1, 5, 4)(2, 3))−1(1, 2, 3)(4, 5)(1, 5, 4)(2, 3) = (1, 4)(2, 5, 3),

(1, 2, 5, 4)−1(1, 2, 3)(4, 5)(1, 2, 5, 4) = (1, 4)(2, 5, 3),

(1, 2, 5)−1(1, 2, 3)(4, 5)(1, 2, 5) = (1, 4)(2, 5, 3),

((1, 5)(2, 3))−1(1, 2, 3)(4, 5)(1, 5)(2, 3) = (1, 4)(2, 5, 3),

(1, 3, 5)−1(1, 2, 3)(4, 5)(1, 3, 5) = (1, 4)(2, 5, 3)

(and this is all that needs to be done to answer the question).

2. Recall from the inner product space section of the course that an n×n matrix
A is said to be orthogonal if AT = A−1. Recall also that (AB)T = BT AT .
Show that the set of all orthogonal n× n matrices is a subgroup of the group
of all invertible n × n matrices by showing that the properties (SG1), (SG2)
and (SG3) hold).

Solution.

Let G be the group of all n× n invertible matrices and H the set of all n× n
orthogonal matrices. Then A ∈ H if and only if AT = A−1. This certainly
implies that every element of H has an inverse; so H is a subset of G.
The identity element of G is the n × n identity matrix I. Since I is its own
inverse, and also its own transpose, we have IT = I = I−1, and hence I ∈ H.
So (SG2) holds for H.
Let A, B ∈ H. Then AT = A−1 and BT = B−1. It was proved earlier in this
course that (AB)T = BT AT . It is similarly well known that whenever A and
B are invertible matrices then their product is invertible, and again the order
of the factors is reversed: (AB)−1 = B−1A−1. So we have that

(AB)T = BT AT = B−1A−1 = (AB)−1,

showing that AB is orthogonal. But A and B were arbitrary elements of H;
so we have shown that AB ∈ H for all A, B ∈ H. So (SG1) holds for H.
Let A ∈ H. Then AT = A−1. Transposing this gives (AT )T = (A−1)T ; that
is, A = (A−1)T . We know that A−1 exists, and the inverse of A−1 is A (since
AA−1 = A−1A = I). So (A−1)T = A = (A−1)−1, which shows that A−1 ∈ H.
So (SG3) holds for H too, and so H is a subgroup of G, as required.
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3. Recall that the column vector
(

1

1

)
is an eigenvector of the 2× 2 matrix A if

and only if A
(

1

1

)
= λ

(
1

1

)
for some scalar λ. Show that the set of all 2× 2

invertible matrices A that have
(

1

1

)
as an eigenvector constitutes a subgroup

of the group of all invertible 2× 2 matrices.

Solution.

Let G be the group of all 2× 2 invertible matrices and

H = {A ∈ G | A
(

1

1

)
= λ

(
1

1

)
for some scalar λ }.

By definition, H is a subset of G.
The identity element of G is the 2× 2 identity matrix I, and since

I

(
1
1

)
=

(
1 0
0 1

) (
1
1

)
=

(
1
1

)
we see that I

(
1

1

)
= λ

(
1

1

)
holds with λ = 1. So I ∈ H; that is, (SG2) holds

for H.
Let A, B ∈ H. Then A and B are invertible 2×2 matrices, and A

(
1

1

)
= λ

(
1

1

)
and B

(
1

1

)
= µ

(
1

1

)
for some scalars λ and µ. Since we know (from the Matrix

Applications course) that the product of two invertible matrices is invertible,
it follows that AB is invertible (with inverse B−1A−1), and, moreover,

(AB)
(

1

1

)
= A

(
B

(
1

1

))
= A

(
µ

(
1

1

))
= µ

(
A

(
1

1

))
= µ

(
λ

(
1

1

))
= (µλ)

(
1

1

)
.

Thus AB ∈ H (since (AB)
(

1

1

)
is a scalar multiple of

(
1

1

)
). Since A and B

were arbitrary elements of H, we have shown that AB ∈ H for all A, B ∈ H.
So (SG1) holds for H.

Let A ∈ H. Then A is invertible and A
(

1

1

)
= λ

(
1

1

)
for some scalar λ.

Multiplying both sides by A−1 gives(
1

1

)
= I

(
1

1

)
= (A−1A)

(
1

1

)
= A−1

(
A

(
1

1

))
= A−1

(
λ

(
1

1

))
= λ

(
A−1

(
1

1

))
.

This implies that λ 6= 0 (since
(

1

1

)
6= 0), and hence 1/λ exists. Multiplying

the above equation by 1/λ gives

1
λ

(
1
1

)
=

1
λ

(
λA−1

(
1
1

))
= A−1

(
1
1

)
,

showing that
(

1

1

)
is an eigenvector for A−1. Since also A−1 is invertible (with

inverse A) it follows that A−1 ∈ H. So (SG3) also holds for H, and so H is a
subgroup of G, as required.
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4. Start MAGMA and set a log file via the command
SetLogFile("assign2");
and then carry out the following steps.

(i) Define S to be the symmetric group Sym(7).
(ii) Define G to be the subgroup of S generated by (1, 7, 6, 5, 4, 3, 2) and

(1, 2)(4, 7), and find the order of G.
(iii) Define C to be the centralizer of (1, 7, 6, 5, 4, 3, 2) in G, and find the order

of C.
(iv) Define X2 to be the set of elements of G of order 2, and find the number

of elements in X2.
(v) Define X3, X4, X7 and X1 to be the sets of elements of G of orders 3, 4,

7 and 1 (respectively), and check that along with X2 these sets account
for all elements of G.

Solution.

> S:=Sym(7);
> a:=S!(1,7,6,5,4,3,2);
> b:=S!(1,2)(4,7);
> G:=sub< S | a,b >;
> #G;
168
> C:=Centralizer(G,a);
> #C;
7
> /* This says that
> there are exactly 7
> elements of G that
> commute with a.
> Since a has order 7
> we know that a has 7
> distinct powers, and
> it is obvious that
> these all commute
> with a. So these are
> the only elements of
> G that commute
> with a. */

> X2:={ x : x in G | Order(x) eq 2};
> #X2;
21
> X3:={ x : x in G | Order(x) eq 3};
> #X3;
56
> X4:={ x : x in G | Order(x) eq 4};
> #X4;
42
> X7:={ x : x in G | Order(x) eq 7};
> #X7;
48
> X1:={ x : x in G | Order(x) eq 1};
> #X1;
1
> #X1+#X2+#X3+#X4+#X7;
168
> /* Since the sets X1,X2,X3,X4,X7
> obviously have no elements in
> common, and since the total number
> of elements in these sets equals
> the number of elements in G,
> we see that every element of G
> must be in one of these subsets.
> Just to check it another way, we
> can ask magma to confirm that the
> union of these subsets equals the
> whole of G. */
> (X1 join X2 join X3 join X4
> join X7) eq Set(G);
true


