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1. Let y = (1,2,3)(4,5) and z = (1,4)(2,5, 3), permutations in Sym(5). Find
six distinct permutations x € Sym(5) such that 2~ lyx = z.
Solution.

Given that y = (1,2,3)(4,5), it follows that z~'yx = (1%,2%,3%)(4%,5%) (for
any = € Sym(5)). This was explained in the solutions to Computer Tutorial 6.
The point is that

(19)% v = gz lya = 19° = (1¥)" = 27,
since y takes 1 to 2, and by similar calculations
(21)x*1yz —9uT — 37 (41):::*13;1 = 4V = 5%
(3:1:):1:_1yz = 3vT = 17, (51)1‘174;1: — BYT _ 4T

We want 2z~ 'yr = z; so these equations become (1%)* = 2% (2%)* = 3%,
(3%)% = 1%, (4*)* = 5% and (5%)® = 4”. Thus the numbers 1*, 2 and 3*
form a 3-cycle in z, while 4 and 5% form a 2-cycle. Indeed, z must equal
(17,27,3%)(4%,5%). But z = (1,4)(2,5,3), so (47,5%) must equal (1,4) and
(1*,27,3%) must equal (2,5,3). This means that 4% is either 1 or 4, and 5%
is either 4 or 1. Similarly 1%, 2% 3% are 2, 5, 3; it does not matter which
is which, but the cyclic ordering must be right. Thus Thus if 1¥ = 2, then
2* =5 and 3% = 3, while if 1* = 5 then 2 = 3 and 3* = 2, and if 1* = 3
then 27 = 2 and 3% = 5. So 2 possibilities for 4* and 5% multiplied by 3
possibilities for 1*, 2% and 3% makes 6 possibilities for = altogether. They are
as follows:
47 =1, 5% =4
1#=2 2*=5 3*=3
giving = (1,2, 5,4);
4" =1, 5* =4
=5 2*=3, 3°=2
giving = = (1,5,4)(2,3);
4* =1, 5%=4
1¥=3, 2*=2 3"=5
giving = (1,3,5,4);
47 =4, 5% =1
1*=2 2*=53*=3

)

giving z = (1,2, 5);
47 =4, 57 =1

1" =5, 2°=3 3°=2
giving 2 = (1,5)(2, 3);
4* =4, 57 =1
17=3, 2°=2 3°=5

giving x = (1,3,5). It is a routine matter of multiplying permutations to
check that

(1,3,5,4)7(1,2,3)(4,5)(1,3,5,4) = (1,4)(2,5,3),
((1,5,4)(2,3)) (1, 2,3)(4,5)(1,5,4)(2,3) = (1,4)(2,5,3),
(1,2,5,4)71(1,2,3)(4,5)(1,2,5,4) = (1,4)(2,5,3),
(1,2,5)71(1,2,3)(4,5)(1,2,5) = (1,4)(2,5,3),
((1,5)(2,3))71(1,2,3)(4,5)(1,5)(2,3) = (1,4)(2,5,3),
(1,3,5)71(1,2,3)(4,5)(1,3,5) = (1,4)(2,5,3)

(and this is all that needs to be done to answer the question).

Recall from the inner product space section of the course that an n x n matrix
A is said to be orthogonal if AT = A=1. Recall also that (AB)T = BT AT

Show that the set of all orthogonal n x n matrices is a subgroup of the group
of all invertible n x n matrices by showing that the properties (SG1), (SG2)
and (SG3) hold).

Solution.

Let G be the group of all n x n invertible matrices and H the set of all n X n
orthogonal matrices. Then A € H if and only if AT = A=, This certainly
implies that every element of H has an inverse; so H is a subset of G.

The identity element of G is the n x n identity matrix I. Since [ is its own
inverse, and also its own transpose, we have I7 = I = I~', and hence I € H.
So (SG2) holds for H.

Let A, B € H. Then AT = A~! and BT = B~!. It was proved earlier in this
course that (AB)T = BT AT, 1t is similarly well known that whenever A and
B are invertible matrices then their product is invertible, and again the order
of the factors is reversed: (AB)~! = B71A~1. So we have that

(ABYT =BTAT = B7'A7!' = (4B)~!
showing that AB is orthogonal. But A and B were arbitrary elements of H;

so we have shown that AB € H for all A, B € H. So (SG1) holds for H.

Let A € H. Then AT = A~!. Transposing this gives (AT)T = (A=1)T; that
is, A= (A1)T. We know that A1 exists, and the inverse of A™! is A (since
AAY=A"TA=1T). So (A )T = A= (A~1)~L, which shows that A~! € H.
So (SG3) holds for H too, and so H is a subgroup of G, as required.



1) is an eigenvector of the 2 x 2 matrix A if

Recall that the column vector (1
and only if A (1) = A (1) for some scalar \. Show that the set of all 2 x 2

invertible matrices A that have as an eigenvector constitutes a subgroup

1
of the group of all invertible 2 x 2 matrices.

Solution.

Let G be the group of all 2 x 2 invertible matrices and
H={AecG| AG) =) (1) for some scalar A }.

By definition, H is a subset of G.
The identity element of G is the 2 x 2 identity matrix I, and since

1 1 0 1 1
(1)-G1)6)-0)
we see that (1) =\ (i) holds with A = 1. So I € H; that is, (SG2) holds
for H.
Let A, B € ‘H. Then A and B are invertible 2x2 matrices, and A (1) = (1)

and B ( 1 ) =Uu ( 1 ) for some scalars A and p. Since we know (from the Matrix

Applications course) that the product of two invertible matrices is invertible,
it follows that AB is invertible (with inverse B~1A~!), and, moreover,

4B) (V) =aB (1) =A@ (1) =ma (1) =0 (1)) = (1)

Thus AB € 'H (since (AB) (1) is a scalar multiple of (1)) Since A and B

were arbitrary elements of H, we have shown that AB € H for all A, B € H.
So (SG1) holds for H.

Let A € H. Then A is invertible and A (1) = A (i) for some scalar \.

Multiplying both sides by A~! gives

(D=1(}) = () =ar@(}) =20 (;) =ra" (1))

This implies that A # 0 (since (1) # 0), and hence 1/ exists. Multiplying
the above equation by 1/)\ gives

()= (D)= (1),

showing that ( 1) is an eigenvector for A~1. Since also A~! is invertible (with

inverse A) it follows that A= € H. So (SG3) also holds for H, and so H is a
subgroup of G, as required.

4. Start MAGMA and set a log file via the command
SetLogFile("assign2");
and then carry out the following steps.
(i) Define S to be the symmetric group Sym(7).
(it) Define G to be the subgroup of S generated by (1,7,6,5,4,3,2) and
(1,2)(4,7), and find the order of G.
(#i) Define C to be the centralizer of (1,7,6,5,4,3,2) in G, and find the order
of C.
(iv) Define X2 to be the set of elements of G of order 2, and find the number
of elements in X2.
(v) Define X3, X4, X7 and X1 to be the sets of elements of G of orders 3, 4,
7 and 1 (respectively), and check that along with X2 these sets account
for all elements of G.
Solution.
> S:=Sym(7); > X2:={ x : x in G | Order(x) eq 2};
> a:=$!'(1,7,6,5,4,3,2); > #X2;
> b:=51(1,2)(4,7); 21
> G:=sub< S | a,b >; > X3:={ x : x in G | Order(x) eq 3};
> #G; > #X3;
168 56
> C:=Centralizer(G,a); > X4:={ x : x in G | Order(x) eq 4};
> #C; > #X4;
7 42
> /* This says that > X7:={ x : x in G | Order(x) eq 77};
> there are exactly 7 > #X7;
> elements of G that 48
> commute with a. > X1:={ x : x in G | Order(x) eq 1};
> Since a has order 7 > #X1;
> we know that a has 7 1
> distinct powers, and > #X1+#X2+#X3+#X4+#X7 ;
> it is obvious that 168
> these all commute > /% Since the sets X1,X2,X3,X4,X7
> with a. So these are > obviously have no elements in
> the only elements of > common, and since the total number
> G that commute > of elements in these sets equals
> with a. */ > the number of elements in G,
> we see that every element of G
> must be in one of these subsets.
> Just to check it another way, we
> can ask magma to confirm that the
> union of these subsets equals the
> whole of G. */
> (X1 join X2 join X3 join X4
> join X7) eq Set(G);
true




