Quantum Casimir elements and Sugawara operators

Alexander Molev

University of Sydney

Plan

• Harish-Chandra isomorphism for \mathfrak{gl}_n .

- Harish-Chandra isomorphism for \mathfrak{gl}_n .
- Eigenvalues of Reshetikhin–Takhtajan–Faddeev central elements.

- Harish-Chandra isomorphism for \mathfrak{gl}_n .
- Eigenvalues of Reshetikhin–Takhtajan–Faddeev central elements.
- ▶ The *q*-immanants and Schur polynomials.

- Harish-Chandra isomorphism for \mathfrak{gl}_n .
- Eigenvalues of Reshetikhin–Takhtajan–Faddeev central elements.
- ▶ The *q*-immanants and Schur polynomials.
- Sugawara operators.

- Harish-Chandra isomorphism for \mathfrak{gl}_n .
- Eigenvalues of Reshetikhin–Takhtajan–Faddeev central elements.
- ▶ The *q*-immanants and Schur polynomials.
- Sugawara operators.

Based on joint papers with Naihuan Jing and Ming Liu: Adv. Math. 2024, JMP 2024, CMP 2025.

We will regard the basis elements E_{ij} of \mathfrak{gl}_n as generators of the universal enveloping algebra $U(\mathfrak{gl}_n)$.

We will regard the basis elements E_{ij} of \mathfrak{gl}_n as generators of the universal enveloping algebra $U(\mathfrak{gl}_n)$.

Defining relations:

$$E_{ij}E_{kl}-E_{kl}E_{ij}=\delta_{kj}E_{il}-\delta_{il}E_{kj}, \qquad i,j,k,l\in\{1,\ldots,n\}.$$

We will regard the basis elements E_{ij} of \mathfrak{gl}_n as generators of the universal enveloping algebra $U(\mathfrak{gl}_n)$.

Defining relations:

$$E_{ij}E_{kl}-E_{kl}E_{ij}=\delta_{kj}E_{il}-\delta_{il}E_{kj}, \qquad i,j,k,l\in\{1,\ldots,n\}.$$

Any element of the center $Z(\mathfrak{gl}_n)$ of $U(\mathfrak{gl}_n)$ is called a Casimir element. Given an *n*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_n)$, the corresponding irreducible highest weight representation $L(\lambda)$ of \mathfrak{gl}_n is generated by a nonzero vector $\xi \in L(\lambda)$ such that

 $E_{ij} \xi = 0$ for $1 \le i < j \le n$, and $E_{ii} \xi = \lambda_i \xi$ for $1 \le i \le n$. Given an *n*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_n)$, the corresponding irreducible highest weight representation $L(\lambda)$ of \mathfrak{gl}_n is generated by a nonzero vector $\xi \in L(\lambda)$ such that

 $E_{ij} \xi = 0$ for $1 \le i < j \le n$, and $E_{ii} \xi = \lambda_i \xi$ for $1 \le i \le n$.

Any element $z \in Z(\mathfrak{gl}_n)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$. Given an *n*-tuple of complex numbers $\lambda = (\lambda_1, ..., \lambda_n)$, the corresponding irreducible highest weight representation $L(\lambda)$ of \mathfrak{gl}_n is generated by a nonzero vector $\xi \in L(\lambda)$ such that

 $E_{ij} \xi = 0$ for $1 \le i < j \le n$, and $E_{ii} \xi = \lambda_i \xi$ for $1 \le i \le n$.

Any element $z \in \mathbb{Z}(\mathfrak{gl}_n)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$.

When regarded as a function of the highest weight, $\chi(z)$ is a symmetric polynomial in the variables ℓ_1, \ldots, ℓ_n , where

 $\ell_i = \lambda_i + n - i.$

The Harish-Chandra isomorphism is the map

$$\chi: \mathbf{Z}(\mathfrak{gl}_n) \to \mathbb{C}[\ell_1, \ldots, \ell_n]^{\mathfrak{S}_n},$$

where $\mathbb{C}[\ell_1, \ldots, \ell_n]^{\mathfrak{S}_n}$ denotes the algebra of symmetric polynomials in ℓ_1, \ldots, ℓ_n .

The Harish-Chandra isomorphism is the map

 $\chi: \mathbf{Z}(\mathfrak{gl}_n) \to \mathbb{C}[\ell_1, \ldots, \ell_n]^{\mathfrak{S}_n},$

where $\mathbb{C}[\ell_1, \dots, \ell_n]^{\mathfrak{S}_n}$ denotes the algebra of symmetric polynomials in ℓ_1, \dots, ℓ_n .

[Okounkov 1996, Okounkov and Olshanski 1998]: The quantum immanants \mathbb{S}_{μ} form a basis of $\mathbb{Z}(\mathfrak{gl}_n)$ as μ runs over Young diagrams with at most *n* rows. The Harish-Chandra isomorphism is the map

 $\chi: \mathbf{Z}(\mathfrak{gl}_n) \to \mathbb{C}[\ell_1, \ldots, \ell_n]^{\mathfrak{S}_n},$

where $\mathbb{C}[\ell_1, \ldots, \ell_n]^{\mathfrak{S}_n}$ denotes the algebra of symmetric polynomials in ℓ_1, \ldots, ℓ_n .

[Okounkov 1996, Okounkov and Olshanski 1998]: The quantum immanants \mathbb{S}_{μ} form a basis of $\mathbb{Z}(\mathfrak{gl}_n)$ as μ runs over Young diagrams with at most *n* rows. Moreover,

 $\chi: \mathbb{S}_{\mu} \mapsto s_{\mu}^*,$

the s^*_{μ} are the shifted (factorial) Schur polynomials.

the Capelli determinant [1890]:

$$C(u) = \operatorname{cdet} \begin{bmatrix} u + n - 1 + E_{11} & E_{12} & \dots & E_{1n} \\ E_{21} & u + n - 2 + E_{22} & \dots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{n1} & \dots & \dots & u + E_{nn} \end{bmatrix}$$

the Capelli determinant [1890]:

$$C(u) = \operatorname{cdet} \begin{bmatrix} u + n - 1 + E_{11} & E_{12} & \dots & E_{1n} \\ E_{21} & u + n - 2 + E_{22} & \dots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{n1} & \dots & \dots & u + E_{nn} \end{bmatrix}$$

 $= u^n + C_1 u^{n-1} + \dots + C_n$

the Capelli determinant [1890]:

$$C(u) = \operatorname{cdet} \begin{bmatrix} u + n - 1 + E_{11} & E_{12} & \dots & E_{1n} \\ E_{21} & u + n - 2 + E_{22} & \dots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{n1} & \dots & \dots & u + E_{nn} \end{bmatrix}$$

$$= u^n + C_1 u^{n-1} + \dots + C_n$$

with

$$\chi: C(u) \mapsto (u+\ell_1)\dots(u+\ell_n)$$

the Capelli determinant [1890]:

$$C(u) = \operatorname{cdet} \begin{bmatrix} u + n - 1 + E_{11} & E_{12} & \dots & E_{1n} \\ E_{21} & u + n - 2 + E_{22} & \dots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{n1} & \dots & \dots & u + E_{nn} \end{bmatrix}$$

$$= u^n + C_1 u^{n-1} + \dots + C_n$$

with

$$\chi: C(u) \mapsto (u+\ell_1) \dots (u+\ell_n).$$

The coefficients C_1, \ldots, C_n are free generators of $Z(\mathfrak{gl}_n)$.

Combine the generators E_{ij} into the matrix

$$E = \begin{bmatrix} E_{11} & \dots & E_{1n} \\ \vdots & \dots & \vdots \\ E_{n1} & \dots & E_{nn} \end{bmatrix}.$$

Combine the generators E_{ij} into the matrix

The traces $tr E^m$ are Casimir elements known as the Gelfand invariants [1950].

Combine the generators E_{ij} into the matrix

The traces $tr E^m$ are Casimir elements known as the Gelfand invariants [1950].

The Harish-Chandra images $\chi(\operatorname{tr} E^m)$ were first calculated by [Perelomov and Popov 1966]:

Combine the generators E_{ij} into the matrix

$$E = \begin{bmatrix} E_{11} & \dots & E_{1n} \\ \vdots & \dots & \vdots \\ E_{n1} & \dots & E_{nn} \end{bmatrix}.$$

The traces $tr E^m$ are Casimir elements known as the Gelfand invariants [1950].

The Harish-Chandra images $\chi(\operatorname{tr} E^m)$ were first calculated by [Perelomov and Popov 1966]:

$$\chi(\operatorname{tr} E^m) = \sum_{k=1}^n \, \ell_k^m \, \frac{(\ell_1 - \ell_k + 1) \dots (\ell_n - \ell_k + 1)}{(\ell_1 - \ell_k) \dots \wedge \dots (\ell_n - \ell_k)}.$$

A short proof is based on the formula

$$1 + \sum_{m=0}^{\infty} \frac{(-1)^m \operatorname{tr} E^m}{u^{m+1}} = \frac{C(u+1)}{C(u)},$$

A short proof is based on the formula

$$1 + \sum_{m=0}^{\infty} \frac{(-1)^m \operatorname{tr} E^m}{u^{m+1}} = \frac{C(u+1)}{C(u)},$$

generalizing both the Newton formula and Liouville formula.

A short proof is based on the formula

$$1 + \sum_{m=0}^{\infty} \frac{(-1)^m \operatorname{tr} E^m}{u^{m+1}} = \frac{C(u+1)}{C(u)},$$

generalizing both the Newton formula and Liouville formula.

Under the Harish-Chandra isomorphism,

$$\chi: \frac{C(u+1)}{C(u)} \mapsto \frac{(u+\ell_1+1)\dots(u+\ell_n+1)}{(u+\ell_1)\dots(u+\ell_n)}.$$

Reshetikhin–Takhtajan–Faddeev presentation

Reshetikhin–Takhtajan–Faddeev presentation

The algebra $U_q(\mathfrak{gl}_n)$ is generated by entries of the matrices

$$L^{+} = \begin{bmatrix} l_{11}^{+} & l_{12}^{+} & \dots & l_{1n}^{+} \\ 0 & l_{22}^{+} & \dots & l_{2n}^{+} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & l_{nn}^{+} \end{bmatrix}$$

Reshetikhin–Takhtajan–Faddeev presentation

The algebra $U_q(\mathfrak{gl}_n)$ is generated by entries of the matrices

and

$$L^{+} = \begin{bmatrix} l_{11}^{+} & l_{12}^{+} & \dots & l_{1n}^{+} \\ 0 & l_{22}^{+} & \dots & l_{2n}^{+} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & l_{nn}^{+} \end{bmatrix}$$
$$L^{-} = \begin{bmatrix} l_{11}^{-} & 0 & \dots & 0 \\ l_{21}^{-} & l_{22}^{-} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1}^{-} & l_{n2}^{-} & \dots & l_{nn}^{-} \end{bmatrix}.$$

$$l_{ii}^{-} l_{ii}^{+} = l_{ii}^{+} l_{ii}^{-} = 1, \qquad 1 \le i \le n,$$
$$R L_{1}^{\pm} L_{2}^{\pm} = L_{2}^{\pm} L_{1}^{\pm} R, \qquad R L_{1}^{+} L_{2}^{-} = L_{2}^{-} L_{1}^{+} R,$$

$$l_{ii}^{-} l_{ii}^{+} = l_{ii}^{+} l_{ii}^{-} = 1, \qquad 1 \le i \le n,$$
$$R L_{1}^{\pm} L_{2}^{\pm} = L_{2}^{\pm} L_{1}^{\pm} R, \qquad R L_{1}^{+} L_{2}^{-} = L_{2}^{-} L_{1}^{+} R,$$

where

$$R = \sum_{i,j} q^{\delta_{ij}} e_{ii} \otimes e_{jj} + (q - q^{-1}) \sum_{i < j} e_{ij} \otimes e_{ji},$$

$$l_{ii}^{-} l_{ii}^{+} = l_{ii}^{+} l_{ii}^{-} = 1, \qquad 1 \le i \le n,$$
$$R L_{1}^{\pm} L_{2}^{\pm} = L_{2}^{\pm} L_{1}^{\pm} R, \qquad R L_{1}^{+} L_{2}^{-} = L_{2}^{-} L_{1}^{+} R,$$

where

$$R = \sum_{i,j} q^{\delta_{ij}} e_{ii} \otimes e_{jj} + (q - q^{-1}) \sum_{i < j} e_{ij} \otimes e_{ji},$$

with subscripts of L^{\pm} indicating the copies of End \mathbb{C}^n as in

$$L_{1}^{\pm} = \sum_{i,j} e_{ij} \otimes 1 \otimes l_{ij}^{\pm} \in \operatorname{End} \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \operatorname{U}_{q}(\mathfrak{gl}_{n}),$$
$$L_{2}^{\pm} = \sum_{i,j} 1 \otimes e_{ij} \otimes l_{ij}^{\pm} \in \operatorname{End} \mathbb{C}^{n} \otimes \operatorname{End} \mathbb{C}^{n} \otimes \operatorname{U}_{q}(\mathfrak{gl}_{n}).$$
Let $U_q^{\circ}(\mathfrak{gl}_n)$ be the subalgebra of $U_q(\mathfrak{gl}_n)$ generated by the entries of the matrix $L = L^+(L^-)^{-1}$.

Let $U_q^{\circ}(\mathfrak{gl}_n)$ be the subalgebra of $U_q(\mathfrak{gl}_n)$ generated by the entries of the matrix $L = L^+(L^-)^{-1}$.

Equivalently, $U_q^{\circ}(\mathfrak{gl}_n)$ can be regarded as the algebra generated by the entries of the matrix $L = [l_{ij}]$ subject to

the reflection equation

 $\check{R}L_1\check{R}L_1 = L_1\check{R}L_1\check{R}, \qquad \check{R} = PR,$

Let $U_q^{\circ}(\mathfrak{gl}_n)$ be the subalgebra of $U_q(\mathfrak{gl}_n)$ generated by the entries of the matrix $L = L^+(L^-)^{-1}$.

Equivalently, $U_q^{\circ}(\mathfrak{gl}_n)$ can be regarded as the algebra generated by the entries of the matrix $L = [l_{ij}]$ subject to

the reflection equation

$$\check{R}L_1\check{R}L_1 = L_1\check{R}L_1\check{R}, \qquad \check{R} = PR,$$

where

$$P=\sum_{i,j}e_{ji}\otimes e_{ij}.$$

The quantum Gelfand invariants are defined by

$$\operatorname{tr}_q L^m = \operatorname{tr} D L^m,$$

with

$$D = \operatorname{diag}[1, q^{-2}, \dots, q^{-2n+2}].$$

The quantum Gelfand invariants are defined by

$$\operatorname{tr}_q L^m = \operatorname{tr} D L^m,$$

with

$$D = \operatorname{diag}[1, q^{-2}, \dots, q^{-2n+2}].$$

The elements $\operatorname{tr}_q L^m$ are central in $\operatorname{U}_q(\mathfrak{gl}_n)$ [RTF 1989].

The quantum Gelfand invariants are defined by

$$\operatorname{tr}_q L^m = \operatorname{tr} D L^m,$$

with

$$D = \operatorname{diag}[1, q^{-2}, \dots, q^{-2n+2}].$$

The elements $\operatorname{tr}_q L^m$ are central in $\operatorname{U}_q(\mathfrak{gl}_n)$ [RTF 1989].

They generate the center $Z_{q}^{\circ}(\mathfrak{gl}_{n})$ of $U_{q}^{\circ}(\mathfrak{gl}_{n})$.

The representation $L_q(\lambda)$ of $U_q(\mathfrak{gl}_n)$ with $\lambda = (\lambda_1, \dots, \lambda_n)$ is generated by a nonzero vector ξ such that

$$l_{ij}^{-}\xi = 0 \quad \text{for} \quad i > j,$$
$$l_{ii}^{+}\xi = q^{\lambda_i}\xi \quad \text{for} \quad i = 1, \dots, n.$$

The representation $L_q(\lambda)$ of $U_q(\mathfrak{gl}_n)$ with $\lambda = (\lambda_1, \dots, \lambda_n)$ is generated by a nonzero vector ξ such that

$$\begin{split} l_{ij}^- \, \xi &= 0 \qquad \text{for} \quad i > j, \\ l_{ii}^+ \, \xi &= q^{\lambda_i} \xi \quad \text{for} \quad i = 1, \dots, n. \end{split}$$

Any element $z \in \mathbb{Z}_q(\mathfrak{gl}_n)$ acts in $L_q(\lambda)$ as a scalar $\chi(z)$.

The representation $L_q(\lambda)$ of $U_q(\mathfrak{gl}_n)$ with $\lambda = (\lambda_1, \dots, \lambda_n)$ is generated by a nonzero vector ξ such that

$$l_{ij}^- \xi = 0$$
 for $i > j$,
 $l_{ii}^+ \xi = q^{\lambda_i} \xi$ for $i = 1, \dots, n$.

Any element $z \in \mathbb{Z}_q(\mathfrak{gl}_n)$ acts in $L_q(\lambda)$ as a scalar $\chi(z)$.

Set $\ell_i = \lambda_i - i + 1$ to have the Harish-Chandra isomorphism

$$\chi: \mathbf{Z}_q^{\circ}(\mathfrak{gl}_n) \to \mathbb{C}[q^{2\ell_1}, \dots, q^{2\ell_n}]^{\mathfrak{S}_n}.$$

[Joseph and Letzter 1992, Rosso 1990, Tanisaki 1990].

We have

$$\chi: q^{n-1} \operatorname{tr}_q L^m \mapsto \sum_{k=1}^n q^{2\ell_k m} \frac{[\ell_k - \ell_1 + 1]_q \dots [\ell_k - \ell_n + 1]_q}{[\ell_k - \ell_1]_q \dots \wedge \dots [\ell_k - \ell_n]_q},$$

We have

$$\chi: q^{n-1} \operatorname{tr}_q L^m \mapsto \sum_{k=1}^n q^{2\ell_k m} \frac{[\ell_k - \ell_1 + 1]_q \dots [\ell_k - \ell_n + 1]_q}{[\ell_k - \ell_1]_q \dots \wedge \dots [\ell_k - \ell_n]_q},$$

where

$$[k]_q = \frac{q^k - q^{-k}}{q - q^{-1}}.$$

We have

$$\chi: q^{n-1} \operatorname{tr}_q L^m \mapsto \sum_{k=1}^n q^{2\ell_k m} \frac{[\ell_k - \ell_1 + 1]_q \dots [\ell_k - \ell_n + 1]_q}{[\ell_k - \ell_1]_q \dots \wedge \dots [\ell_k - \ell_n]_q},$$

where

$$[k]_q = \frac{q^k - q^{-k}}{q - q^{-1}}.$$

The Perelomov–Popov formulas follow from the theorem by taking the limit $q \rightarrow 1$.

The Hecke algebra \mathcal{H}_m is generated by elements T_1, \ldots, T_{m-1} subject to the relations

 $(T_i - q)(T_i + q^{-1}) = 0,$ $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$ $T_i T_j = T_j T_i \text{ for } |i - j| > 1.$

The Hecke algebra \mathcal{H}_m is generated by elements T_1, \ldots, T_{m-1} subject to the relations

 $(T_i - q)(T_i + q^{-1}) = 0,$ $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$ $T_i T_j = T_j T_i \text{ for } |i - j| > 1.$

The Jucys–Murphy elements are defined by

$$y_k = T_{k-1} \dots T_2 T_1^2 T_2 \dots T_{k-1}, \qquad k = 1, \dots, m.$$

The Hecke algebra \mathcal{H}_m is generated by elements T_1, \ldots, T_{m-1} subject to the relations

 $(T_i - q)(T_i + q^{-1}) = 0,$ $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$ $T_i T_j = T_j T_i \text{ for } |i - j| > 1.$

The Jucys–Murphy elements are defined by

$$y_k = T_{k-1} \dots T_2 T_1^2 T_2 \dots T_{k-1}, \qquad k = 1, \dots, m.$$

[Cherednik 1987], [Dipper and James 1987].

The Hecke algebra \mathcal{H}_m is semisimple,

$$\mathcal{H}_m \cong \bigoplus_{\mu \vdash m} \operatorname{Mat}_{f_{\mu}}(\mathbb{C}),$$

where f_{μ} is the number of standard tableaux of shape μ .

The Hecke algebra \mathcal{H}_m is semisimple,

$$\mathcal{H}_m \cong \bigoplus_{\mu \vdash m} \operatorname{Mat}_{f_{\mu}}(\mathbb{C}),$$

where f_{μ} is the number of standard tableaux of shape μ .

The diagonal matrix units $e_{\mathcal{U}} = e_{\mathcal{U}\mathcal{U}} \in \operatorname{Mat}_{f_{\mu}}(\mathbb{C})$ with $\operatorname{sh}(\mathcal{U}) = \mu$ are primitive idempotents of \mathcal{H}_m . The Hecke algebra \mathcal{H}_m is semisimple,

$$\mathcal{H}_m \cong \bigoplus_{\mu \vdash m} \operatorname{Mat}_{f_{\mu}}(\mathbb{C}),$$

where f_{μ} is the number of standard tableaux of shape μ .

The diagonal matrix units $e_{\mathcal{U}} = e_{\mathcal{U}\mathcal{U}} \in \operatorname{Mat}_{f_{\mu}}(\mathbb{C})$ with $\operatorname{sh}(\mathcal{U}) = \mu$ are primitive idempotents of \mathcal{H}_m .

They can be expressed explicitly in terms of the generators T_i or the Jucys–Murphy elements y_k .

If $\ensuremath{\mathcal{U}}$ is the tableau

If $\boldsymbol{\mathcal{U}}$ is the tableau

then

$$e_{\mathcal{U}} = \frac{(y_2 - q^2) \dots (y_m - q^2)}{(q^{-2} - q^2) \dots (q^{-2m+2} - q^2)}.$$

If $\boldsymbol{\mathcal{U}}$ is the tableau

then

$$e_{\mathcal{U}} = \frac{(y_2 - q^2) \dots (y_m - q^2)}{(q^{-2} - q^2) \dots (q^{-2m+2} - q^2)}.$$

If \mathcal{U} is the tableau

$$1 \quad 2 \quad \cdots \quad m$$

If $\boldsymbol{\mathcal{U}}$ is the tableau

then

$$e_{\mathcal{U}} = \frac{(y_2 - q^2) \dots (y_m - q^2)}{(q^{-2} - q^2) \dots (q^{-2m+2} - q^2)}.$$

If \mathcal{U} is the tableau

$$e_{\mathcal{U}} = \frac{(y_2 - q^{-2}) \dots (y_m - q^{-2})}{(q^2 - q^{-2}) \dots (q^{2m-2} - q^{-2})}.$$

The Hecke algebra \mathcal{H}_m acts on $(\mathbb{C}^n)^{\otimes m}$ by

$$T_k \mapsto \check{R}_{k\,k+1}, \qquad k=1,\ldots,m-1,$$

The Hecke algebra \mathcal{H}_m acts on $(\mathbb{C}^n)^{\otimes m}$ by

$$T_k \mapsto \check{R}_{k\,k+1}, \qquad k=1,\ldots,m-1,$$

where

$$\check{R}_{k\,k+1} \in \underbrace{\operatorname{End} \mathbb{C}^n \otimes \ldots \otimes \operatorname{End} \mathbb{C}^n}_m$$

The Hecke algebra \mathcal{H}_m acts on $(\mathbb{C}^n)^{\otimes m}$ by

$$T_k \mapsto \check{R}_{k\,k+1}, \qquad k=1,\ldots,m-1,$$

where

$$\check{R}_{k\,k+1} \in \underbrace{\operatorname{End} \mathbb{C}^n \otimes \ldots \otimes \operatorname{End} \mathbb{C}^n}_m$$

and

$$\check{R} = PR = \sum_{i,j} q^{\delta_{ij}} e_{ji} \otimes e_{ij} + (q - q^{-1}) \sum_{i < j} e_{jj} \otimes e_{ii}.$$

Definition. Given any standard tableau \mathcal{U} of shape μ , the associated *q*-immanant polynomial is

$$\mathbb{S}_{\mu}(z) = \operatorname{tr}_{q(1,\dots,m)} \left(L_{1}^{+} + zq^{-2c_{1}(\mathcal{U})}L_{1}^{-} \right) \dots \left(L_{m}^{+} + zq^{-2c_{m}(\mathcal{U})}L_{m}^{-} \right)$$
$$\times \left(L_{m}^{-} \right)^{-1} \dots \left(L_{1}^{-} \right)^{-1} \mathcal{E}_{\mathcal{U}},$$

where $\mathcal{E}_{\mathcal{U}}$ is the image of $e_{\mathcal{U}}$, while $c_k(\mathcal{U}) = j - i$ is the content of the box $\alpha = (i, j)$ occupied by *k*.

Definition. Given any standard tableau \mathcal{U} of shape μ , the associated *q*-immanant polynomial is

$$\mathbb{S}_{\mu}(z) = \operatorname{tr}_{q(1,\dots,m)} \left(L_{1}^{+} + zq^{-2c_{1}(\mathcal{U})}L_{1}^{-} \right) \dots \left(L_{m}^{+} + zq^{-2c_{m}(\mathcal{U})}L_{m}^{-} \right)$$
$$\times \left(L_{m}^{-} \right)^{-1} \dots \left(L_{1}^{-} \right)^{-1} \mathcal{E}_{\mathcal{U}},$$

where $\mathcal{E}_{\mathcal{U}}$ is the image of $e_{\mathcal{U}}$, while $c_k(\mathcal{U}) = j - i$ is the content of the box $\alpha = (i, j)$ occupied by *k*. It only depends on μ .

Definition. Given any standard tableau \mathcal{U} of shape μ , the associated *q*-immanant polynomial is

$$\mathbb{S}_{\mu}(z) = \operatorname{tr}_{q(1,\dots,m)} \left(L_{1}^{+} + zq^{-2c_{1}(\mathcal{U})}L_{1}^{-} \right) \dots \left(L_{m}^{+} + zq^{-2c_{m}(\mathcal{U})}L_{m}^{-} \right)$$
$$\times \left(L_{m}^{-} \right)^{-1} \dots \left(L_{1}^{-} \right)^{-1} \mathcal{E}_{\mathcal{U}},$$

where $\mathcal{E}_{\mathcal{U}}$ is the image of $e_{\mathcal{U}}$, while $c_k(\mathcal{U}) = j - i$ is the content of the box $\alpha = (i, j)$ occupied by *k*. It only depends on μ .

The expression under the trace belongs to

$$\underbrace{\operatorname{End} \mathbb{C}^n \otimes \ldots \otimes \operatorname{End} \mathbb{C}^n}_m \otimes \operatorname{U}_q(\mathfrak{gl}_n).$$

Equivalent definition.

The q-immanant polynomial is given by

$$\mathbb{S}_{\mu}(z) = \operatorname{tr}_{q(1,\dots,m)}\left(L_{\overline{1}} + zq^{-2c_{1}(\mathcal{U})}\right)\dots\left(L_{\overline{m}} + zq^{-2c_{m}(\mathcal{U})}\right)\mathcal{E}_{\mathcal{U}},$$

where $L = L^+ (L^-)^{-1}$.

Equivalent definition.

The q-immanant polynomial is given by

$$\mathbb{S}_{\mu}(z) = \operatorname{tr}_{q(1,\ldots,m)}\left(L_{\overline{1}} + zq^{-2c_{1}(\mathcal{U})}\right)\ldots\left(L_{\overline{m}} + zq^{-2c_{m}(\mathcal{U})}\right)\mathcal{E}_{\mathcal{U}},$$

where $L = L^+ (L^-)^{-1}$.

Given a matrix *X*, we set $X_{\overline{1}} = X_1$ and

$$X_{\overline{k}} = \check{R}_{k-1\,k} \dots \check{R}_{1\,2} X_1 \check{R}_{1\,2}^{-1} \dots \check{R}_{k-1\,k}^{-1}, \qquad k \ge 2.$$
Equivalent definition.

The q-immanant polynomial is given by

$$\mathbb{S}_{\mu}(z) = \operatorname{tr}_{q(1,\ldots,m)}\left(L_{\overline{1}} + zq^{-2c_{1}(\mathcal{U})}\right)\ldots\left(L_{\overline{m}} + zq^{-2c_{m}(\mathcal{U})}\right)\mathcal{E}_{\mathcal{U}},$$

where $L = L^+ (L^-)^{-1}$.

Given a matrix *X*, we set $X_{\overline{1}} = X_1$ and

$$X_{\overline{k}} = \check{R}_{k-1\,k} \dots \check{R}_{1\,2} X_1 \check{R}_{1\,2}^{-1} \dots \check{R}_{k-1\,k}^{-1}, \qquad k \ge 2.$$

Note that in the specialization q = 1 we have $\check{R} = P$ so that $X_{\bar{k}} = X_k$.

All coefficients of $\mathbb{S}_{\mu}(z)$ belong to the center of $U_q(\mathfrak{gl}_n)$.

- ► All coefficients of $S_{\mu}(z)$ belong to the center of $U_q(\mathfrak{gl}_n)$.
- The eigenvalue of S_μ(z) in the module L_q(λ) coincides with the factorial Schur polynomial

- ► All coefficients of $S_{\mu}(z)$ belong to the center of $U_q(\mathfrak{gl}_n)$.
- The eigenvalue of S_μ(z) in the module L_q(λ) coincides with the factorial Schur polynomial

$$s_{\mu}(q^{2\ell_1},\ldots,q^{2\ell_n}|z) = \sum_{\mathsf{sh}(\mathcal{T})=\mu} \prod_{\alpha\in\mu} \Big(q^{2\ell_{\mathcal{T}(\alpha)}} + z q^{-2\mathcal{T}(\alpha)-2c(\alpha)+2}\Big).$$

- ► All coefficients of $S_{\mu}(z)$ belong to the center of $U_q(\mathfrak{gl}_n)$.
- The eigenvalue of S_μ(z) in the module L_q(λ) coincides with the factorial Schur polynomial

$$s_{\mu}(q^{2\ell_1},\ldots,q^{2\ell_n}|z) = \sum_{\mathsf{sh}(\mathcal{T})=\mu} \prod_{\alpha\in\mu} \left(q^{2\ell_{\mathcal{T}(\alpha)}} + z \, q^{-2\mathcal{T}(\alpha)-2c(\alpha)+2} \right).$$

For any fixed z ∈ C, the elements S_µ(z) form a basis of the center of U^o_q(gl_n).

$$\blacktriangleright \ \mathbb{S}_{\mu}(0) = \operatorname{tr}_{q(1,\dots,m)} L_{\overline{1}} \dots L_{\overline{m}} \mathcal{E}_{\mathcal{U}} \mapsto s_{\mu}(q^{2\ell_1},\dots,q^{2\ell_n})$$

$$\blacktriangleright \ \mathbb{S}_{\mu}(0) = \operatorname{tr}_{q(1,\ldots,m)} L_{\overline{1}} \ldots L_{\overline{m}} \mathcal{E}_{\mathcal{U}} \mapsto s_{\mu}(q^{2\ell_1},\ldots,q^{2\ell_n})$$

coincides with the Drinfeld–Reshetikhin element. [Drinfeld 1989, Reshetikhin 1989].

S_µ(0) = tr_{q(1,...,m)} L₁ . . . L_m E_U → s_µ(q^{2ℓ1}, . . . , q^{2ℓn}) coincides with the Drinfeld–Reshetikhin element.
 [Drinfeld 1989, Reshetikhin 1989].

• Take $z = (q - q^{-1})^{-1}$ and define the *q*-immanant by

$$\mathbb{S}_{\mu} = \mathbb{S}_{\mu} \Big(\frac{1}{q - q^{-1}} \Big).$$

S_µ(0) = tr_{q(1,...,m)} L₁ . . . L_m E_U → s_µ(q^{2ℓ1}, . . . , q^{2ℓn}) coincides with the Drinfeld–Reshetikhin element.
 [Drinfeld 1989, Reshetikhin 1989].

• Take $z = (q - q^{-1})^{-1}$ and define the *q*-immanant by

$$\mathbb{S}_{\mu} = \mathbb{S}_{\mu} \Big(\frac{1}{q - q^{-1}} \Big).$$

The limit value of \mathbb{S}_{μ} as $q \to 1$ coincides with the quantum immanant \mathbb{S}_{μ} for \mathfrak{gl}_n [Okounkov 1996].

The quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_n)$ is generated by elements

 $l_{ij}^+[-r], \quad l_{ij}^-[r] \quad \text{with} \quad 1 \leq i, j \leq n, \quad r = 0, 1, \dots,$

and the invertible central element q^c ,

The quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_n)$ is generated by elements

 $l_{ii}^+[-r], \qquad l_{ii}^-[r] \qquad \text{with} \quad 1 \leq i, j \leq n, \qquad r = 0, 1, \dots,$

and the invertible central element q^c , subject to the defining relations

$$l_{ji}^{+}[0] = l_{ij}^{-}[0] = 0 \qquad \text{for} \qquad 1 \le i < j \le n,$$
$$l_{ii}^{+}[0] \ l_{ii}^{-}[0] = l_{ii}^{-}[0] \ l_{ii}^{+}[0] = 1 \qquad \text{for} \qquad i = 1, \dots, n,$$

The quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_n)$ is generated by elements

 $l_{ii}^+[-r], \qquad l_{ii}^-[r] \qquad \text{with} \quad 1 \leq i, j \leq n, \qquad r = 0, 1, \dots,$

and the invertible central element q^c , subject to the defining relations

$$l_{ji}^{+}[0] = l_{ij}^{-}[0] = 0 \qquad \text{for} \qquad 1 \le i < j \le n,$$
$$l_{ii}^{+}[0] \, l_{ii}^{-}[0] = l_{ii}^{-}[0] \, l_{ii}^{+}[0] = 1 \qquad \text{for} \qquad i = 1, \dots, n,$$

and

$$\begin{aligned} R(u/v)L_1^{\pm}(u)L_2^{\pm}(v) &= L_2^{\pm}(v)L_1^{\pm}(u)R(u/v), \\ R(uq^{-c}/v)L_1^{+}(u)L_2^{-}(v) &= L_2^{-}(v)L_1^{+}(u)R(uq^{c}/v). \end{aligned}$$

We consider the matrices $L^{\pm}(u) = \left[l_{ij}^{\pm}(u) \right]$ with

$$l_{ij}^+(u) = \sum_{r=0}^{\infty} l_{ij}^+[-r]u^r, \qquad l_{ij}^-(u) = \sum_{r=0}^{\infty} l_{ij}^-[r]u^{-r}.$$

We consider the matrices $L^{\pm}(u) = \left[l_{ij}^{\pm}(u) \right]$ with

$$l_{ij}^+(u) = \sum_{r=0}^{\infty} l_{ij}^+[-r]u^r, \qquad l_{ij}^-(u) = \sum_{r=0}^{\infty} l_{ij}^-[r]u^{-r}.$$

The *R*-matrix R(x) is defined by

$$R(x) = \frac{f(x)}{q - q^{-1}x} \left(R + xR_{21} |_{q \mapsto q^{-1}} \right),$$

where $f(x) \in 1 + x \mathbb{C}[[x]]$ is determined by

$$f(xq^{2n}) = f(x) \frac{(1 - xq^2)(1 - xq^{2n-2})}{(1 - x)(1 - xq^{2n})}.$$

We consider the matrices $L^{\pm}(u) = \left[l_{ii}^{\pm}(u)\right]$ with

$$l_{ij}^+(u) = \sum_{r=0}^{\infty} l_{ij}^+[-r]u^r, \qquad l_{ij}^-(u) = \sum_{r=0}^{\infty} l_{ij}^-[r]u^{-r}.$$

The *R*-matrix R(x) is defined by

$$R(x) = \frac{f(x)}{q - q^{-1}x} \left(R + xR_{21} \big|_{q \mapsto q^{-1}} \right),$$

where $f(x) \in 1 + x \mathbb{C}[[x]]$ is determined by

$$f(xq^{2n}) = f(x) \frac{(1 - xq^2)(1 - xq^{2n-2})}{(1 - x)(1 - xq^{2n})}.$$

[Reshetikhin and Semenov-Tian-Shansky 1990], [Frenkel and Reshetikhin 1992]. Denote by $U_q(\widehat{\mathfrak{gl}}_n)_{cri}$ the quantum affine algebra at the critical level c = -n.

Denote by $U_q(\widehat{\mathfrak{gl}}_n)_{cri}$ the quantum affine algebra at the critical level c = -n.

Its completion $\widetilde{\mathrm{U}}_q(\widehat{\mathfrak{gl}}_n)_{\mathrm{cri}}$ is defined as the inverse limit

$$\widetilde{\mathrm{U}}_q(\widehat{\mathfrak{gl}}_n)_{\mathrm{cri}} = \lim_{\longleftarrow} \mathrm{U}_q(\widehat{\mathfrak{gl}}_n)_{\mathrm{cri}}/J_p, \qquad p>0,$$

where J_p is the left ideal of $U_q(\widehat{\mathfrak{gl}}_n)_{cri}$ generated by all elements $l_{ij}^-[r]$ with $r \ge p$.

Definition. Given a standard μ -tableau \mathcal{U} , introduce the Laurent series $\mathbb{S}_{\mu}(z)$ in *z* by

Definition. Given a standard μ -tableau \mathcal{U} , introduce the Laurent series $\mathbb{S}_{\mu}(z)$ in *z* by

$$S_{\mu}(z) = \operatorname{tr}_{q(1,...,m)} L_{1}^{+}(zq^{-2c_{1}(\mathcal{U})}) \dots L_{m}^{+}(zq^{-2c_{m}(\mathcal{U})}) \times L_{m}^{-}(zq^{-n-2c_{m}(\mathcal{U})})^{-1} \dots L_{1}^{-}(zq^{-n-2c_{1}(\mathcal{U})})^{-1} \mathcal{E}_{\mathcal{U}},$$

where the *q*-trace is taken over all *m* copies of End \mathbb{C}^n .

Definition. Given a standard μ -tableau \mathcal{U} , introduce the Laurent series $\mathbb{S}_{\mu}(z)$ in *z* by

$$S_{\mu}(z) = \operatorname{tr}_{q(1,...,m)} L_{1}^{+}(zq^{-2c_{1}(\mathcal{U})}) \dots L_{m}^{+}(zq^{-2c_{m}(\mathcal{U})}) \times L_{m}^{-}(zq^{-n-2c_{m}(\mathcal{U})})^{-1} \dots L_{1}^{-}(zq^{-n-2c_{1}(\mathcal{U})})^{-1} \mathcal{E}_{\mathcal{U}},$$

where the *q*-trace is taken over all *m* copies of End \mathbb{C}^n .

It only depends on μ .

Definition. Given a standard μ -tableau \mathcal{U} , introduce the Laurent series $\mathbb{S}_{\mu}(z)$ in *z* by

$$S_{\mu}(z) = \operatorname{tr}_{q(1,...,m)} L_{1}^{+}(zq^{-2c_{1}(\mathcal{U})}) \dots L_{m}^{+}(zq^{-2c_{m}(\mathcal{U})}) \times L_{m}^{-}(zq^{-n-2c_{m}(\mathcal{U})})^{-1} \dots L_{1}^{-}(zq^{-n-2c_{1}(\mathcal{U})})^{-1} \mathcal{E}_{\mathcal{U}},$$

where the *q*-trace is taken over all *m* copies of End \mathbb{C}^n .

It only depends on μ .

All coefficients of $\mathbb{S}_{\mu}(z)$ belong to $\widetilde{U}_q(\widehat{\mathfrak{gl}}_n)_{cri}$.

All coefficients of the Laurent series $\mathbb{S}_{\mu}(z)$ are quantum Sugawara operators:

All coefficients of the Laurent series $\mathbb{S}_{\mu}(z)$ are quantum Sugawara operators:

they belong to the center $Z_q(\widehat{\mathfrak{gl}}_n)$ of $\widetilde{U}_q(\widehat{\mathfrak{gl}}_n)_{cri}$.

All coefficients of the Laurent series $\mathbb{S}_{\mu}(z)$ are quantum Sugawara operators:

they belong to the center $Z_q(\widehat{\mathfrak{gl}}_n)$ of $\widetilde{U}_q(\widehat{\mathfrak{gl}}_n)_{cri}$.

Remarks.

Case $\mu = (1^m)$: [Frappat, Jing, M. and Ragoucy 2016].

All coefficients of the Laurent series $\mathbb{S}_{\mu}(z)$ are quantum Sugawara operators:

they belong to the center $Z_q(\widehat{\mathfrak{gl}}_n)$ of $\widetilde{U}_q(\widehat{\mathfrak{gl}}_n)_{cri}$.

Remarks.

Case $\mu = (1^m)$: [Frappat, Jing, M. and Ragoucy 2016].

A general construction based on the universal *R*-matrix: [Ding and Etingof 1994].

The Harish-Chandra images of the quantum Sugawara operators are found by

$$\chi: \mathbb{S}_{\mu}(z) \mapsto \sum_{\mathrm{sh}(\mathcal{T})=\mu} \prod_{\alpha \in \mu} x_{\mathcal{T}(\alpha)}(zq^{-2c(\alpha)}),$$

The Harish-Chandra images of the quantum Sugawara operators are found by

$$\chi: \mathbb{S}_{\mu}(z) \mapsto \sum_{\mathrm{sh}(\mathcal{T})=\mu} \prod_{\alpha \in \mu} x_{\mathcal{T}(\alpha)}(zq^{-2c(\alpha)}),$$

summed over semistandard tableaux \mathcal{T} of shape μ with entries in $\{1, 2, \ldots, n\}$, where

The Harish-Chandra images of the quantum Sugawara operators are found by

$$\chi: \mathbb{S}_{\mu}(z) \mapsto \sum_{\mathrm{sh}(\mathcal{T})=\mu} \prod_{\alpha \in \mu} x_{\mathcal{T}(\alpha)}(zq^{-2c(\alpha)}),$$

summed over semistandard tableaux T of shape μ with entries in $\{1, 2, ..., n\}$, where

$$x_i(z) = q^{2-2i} \frac{l_{ii}^+(z) \, l_{11}^-(zq^{-n+2}) \dots l_{i-1\,i-1}^-(zq^{-n+2i-2})}{l_{11}^-(zq^{-n}) \dots l_{ii}^-(zq^{-n+2i-2})}.$$

Remarks.

Remarks.

- The Harish-Chandra image of S_µ(z) coincides with the *q*-character of the evaluation module L(µ) = E_U(ℂⁿ)^{⊗m} over U_q(ĝt_n)
 [Frenkel and Reshetikhin 1999],
 [Frenkel and Mukhin 2002],
 - [Brundan and Kleshchev 2008].

Remarks.

- The Harish-Chandra image of S_µ(z) coincides with the *q*-character of the evaluation module L(µ) = E_U(ℂⁿ)^{⊗m} over U_q(ĝt_n)
 [Frenkel and Reshetikhin 1999],
 [Frenkel and Mukhin 2002],
 [Brundan and Kleshchev 2008].
- The theorem yields the eigenvalues of quantum Sugawara operators on the *q*-deformed Wakimoto modules over U_q(gl_n) at the critical level.
 [Awata, Odake and Shiraishi 1994].