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Abstract

A model of limit order market is presented, and some of its statisti-
cal properties are deduced. Given the underlying supply and demand
functions, the analysis yields the stationary probability distributions
for the best ask and bid prices in the order book, and for the prices of
actual trades. It also predicts the existence of a clearly-defined price
window within which all trades take place, thus providing a quantita-
tive explanation for the phenomena of support and resistance. If the
bid-ask spread is narrow and the elasticities of supply and demand are
not strongly price-dependent, the distributions of quotes and trades
within this window are completely determined by a single parameter
corresponding to the proportion of market participants who own at
least one unit of the asset being traded.
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1 Introduction

Over the last two decades, most securities exchanges have introduced au-
tomated trade execution systems that use the continuous double auction
(CDA) mechanism to match buyers with sellers during trading hours. [See
Domowitz (1993) for a review of this trend.] This mechanism permits traders
to submit or to accept buy orders (bids) and sell orders (asks) at any time
while the exchange is open, and is characterised by the existence of an elec-
tronic order book in which unexecuted or partially executed orders are stored
and displayed while awaiting execution.

The CDA mechanism provides a natural multilateral generalisation of the
familiar process of haggling between a single buyer and seller, and appears
to be well-suited to the needs of modern financial markets. It has been found
in laboratory experiments to give very rapid convergence to a competitive
equilibrium [as discussed by Smith (1962) and Smith, Williams, Bratton and
Vanoni (1982)], and also to yield extremely efficient allocations. [A number
of relevant studies are surveyed by Friedman (1993).]

Countless versions of the CDA mechanism can be envisaged, each char-
acterised by the types of orders that may be submitted and the way in which
these are handled. In practice most automated exchanges operate primarily
as limit order markets, and accept orders of the following basic types:

• Limit orders - orders to buy a specified quantity at a price not ex-
ceeding some specified maximum (the bid price), or to sell a specified
quantity at a price not less than some specified minimum (the ask
price). Unless it can be executed against a pre-existing order, a new
limit order joins the queue of asks or bids in the order book and re-
mains there until it is either cancelled or else (after reaching the top
of its queue) executed against a subsequent order. The queues are
arranged primarily according to price; a high-priced bid takes prece-
dence over a low-priced bid, while a low-priced ask takes precedence
over a high-priced ask.

• Market orders - orders to buy or sell a specified quantity at the best
price currently available. A market order is executed immediately and
as fully as possible. Any unexecuted part may then be converted to a
limit order at the same price (as on the Paris Bourse), or else executed
at the next best available price (as on the NYSE). Some exchanges
(such as Chicago’s CME) do not permit market orders, but instead
allow traders to “hit the bid” or “take the ask” - i.e. to execute trades
against selected bids or asks in the order book. The selected orders
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are invariably the most competitively priced, and so in most situations
these actions have the same effect as market orders.

Although some exchanges utilize hybrid systems, an increasing number
(including the Paris, Tokyo, Toronto and Sydney stock exchanges) may be
regarded as pure limit order markets. Glosten (1994) argues that exchanges
operating in this manner are not only good providers of liquidity in extreme
situations, but are also immune to competition from other exchanges.

In a limit order market, transaction prices are determined by the interac-
tion of incoming orders with the limit order book. An understanding of this
interaction is therefore required to properly model price formation and the
stochastic properties of price fluctuations. This has motivated several em-
pirical studies of real limit order markets, including those by Biais, Hillion
and Spatt (1995) and Hamao and Hasbrouck (1995).

A tractable model of the order book would be of considerable value,
but the development of such a model has been hindered by the inherent
complexity of limit order markets. Recent investigations [such as those by
Chakravarty & Holden (1995) and Parlour (1998)] have generally focussed
on the strategies available to traders and market makers, and provide limited
insight into the statistical properties of the order book.

Instead of attempting to anticipate how traders will behave, the approach
taken here is to start by assuming that their combined effect is to generate
flows of buy and sell orders with known price distributions. The next step
is to determine the resulting distributions of bids and asks in the order
book, and the distribution of transaction prices. This approach is similar to
that proposed by Garman (1976), although he did not attempt to develop
a solvable model except for the simple case in which all bids and asks are
made at a single price. It is also related to the approach of Domowitz and
Wang (1994), although their results are invalid due to an error in the proof
of their main theorem. (This is discussed in Appendix B).

The model considered here is relatively simple, but nonetheless captures
the important features of real limit order markets. For example, its structure
ensures that competitively priced orders are executed more promptly on
average than less competitive orders. Its properties are fully described in
Section 2.

For exogenous supply and demand functions, the analysis of Section 3
yields the stationary distributions of the best ask and bid prices in the order
book, and the frequency of transactions at any given price. These distribu-
tions are generally restricted to a clearly defined price window (referred to as
the “competitive window”), between limits that are determined by the form
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of the supply and demand functions. By way of example, Section 4 deals
with a market in which supply and demand have price-independent elas-
ticities. Section 5 considers an application to markets with narrow bid-ask
spreads, and Section 6 discusses some of the implications and limitations of
the model. Appendices A and B contain the proof of the Theorem presented
in Section 3, a detailed discussion of the erroneous theorem of Domowitz and
Wang (1994). Appendix C contains an analysis of the problem of determin-
ing the supply and demand functions from the order book statistics.

2 The Model

During continuous trading, a limit order at a sufficiently competitive price
will be immediately executed against the best available bid or ask just as
though it were a market order. Consequently a model of a continuous limit
order market does not need to explicitly incorporate markets orders, as these
may be represented by very high-priced limit buy orders or very low-priced
limit sell orders. This is the approach taken here.

We consider a model limit order market with the following properties:

L1: There are large numbers of potential buyers and sellers acting inde-
pendently of one another, with each individual only occasionally sub-
mitting an order to the exchange. (In particular, there is no single
specialist responsible for making a market.) This allows us to regard
each order as originating from a different source, and hence unrelated
to any other order. The arrival of orders of any specified type, or
within any specified price range, will then be a Poisson process.

L2: All orders are for a single unit. Hence, a buyer needs only to specify
the maximum price she will pay (the “bid price”), while a seller needs
only to specify the minimum price she will accept (the “ask price”).
This eliminates the possibility of partial execution, and hence the need
for rules governing the handling of partially executed orders.

L3: There is a continuous range of possible prices.

L4: The underlying supply and demand functions are time-independent.

L5: Market participants prepare and submit their orders without making
use of detailed information about the current state of the order book.
Opportunistic traders are thus unable to take advantage of temporary
anomalies in the order book, although they can use their knowledge

3



of its statistical properties. (In real markets this is often the situation
faced by retail investors, whose orders may not be relayed promptly
enough to allow them to take advantage of order book anomalies.)

L6: Once submitted to the exchange, orders are never cancelled. Though
inapplicable to real markets, this assumption seems reasonable here
since L4 and L5 preclude the possibility that a change in market con-
ditions may motivate a trader to cancel an order. (In any case, the
effect of a non-zero cancellation rate could presumably be approxi-
mated by reducing the arrival rate of orders.)

Properties L1 and L2 considerably simplify the problem, and appear
indispensible to the following analysis. On the other hand, L3, L4, L5 and
L6 are probably inessential, and can hopefully be relaxed in future work.
[Note that L1, L2, L4 and L5 are similar to assumptions made in the seminal
paper by Garman (1976).]

At a given time t, the order book will contain a queue of unexecuted
asks at prices α1(t), α2(t), . . . and another queue of unexecuted bids at prices
β1(t), β2(t), . . . waiting to be matched with incoming orders. These prices
are indexed so that α1 denotes the lowest (i.e. best) ask price, α2 the second
lowest, and so on. Similarly, β1 denotes the highest (i.e. best) bid price, β2

the second highest, etc. The prices will therefore satisfy the inequalities

. . . β3(t) ≤ β2(t) ≤ β1(t) < α1(t) ≤ α2(t) ≤ α3(t) . . . . (1)

We are primarily interested in the best ask price α1(t) and best bid price
β1(t), but must keep track of all the other unexecuted orders as any of these
may eventually rise to the tops of their respective queues.

Whenever a new order is received by the exchange, the contents of the
order book are modified according to the following dynamical rules:

R1: If the new order is an ask at the price α, then

• If α ≤ β1, the new ask is matched with the best unexecuted bid,
and the two are executed at the bid price β1.

• If α > β1, no match is possible, and the new ask joins the queue
of unexecuted asks in the order book.

R2: If the new order is a bid at the price β then

• If β ≥ α1, the new bid is matched with the best unexecuted ask,
and the two are executed at the ask price α1.
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• If β < α1, no match is possible, and the new bid joins the queue
of unexecuted bids in the order book.

Given a sequence of orders, these rules completely determine the evolution
of the market. Here, however, the arrivals of new bids and asks are regarded
as stochastic processes. Assumptions L1 and L4 imply that the arrival of
new asks at prices not exceeding x will be a Poisson process with parameter
λA(x), where λA is an increasing function. Similarly, the arrival of new
bids at prices of at least x will be a Poisson process with parameter λB(x),
where λB is a decreasing function. For convenience we suppose that both of
these functions are everywhere differentiable and strictly monotonic, so that
there is a non-zero probability of receiving a bid or offer within any given
price range. In fact λA(x) and λB(x) may be interpreted respectively as the
supply and demand functions.

Our goal is to determine the statistical properties of an ensemble of order
books governed by the dynamical rules R1 and R2, given that the arrivals of
asks and bids are Poisson processes as described above. A complete theory
would provide a full statistical description of the order book dynamics and
the price process. However, the construction of such a theory proves to
be a very difficult problem which is beyond the scope of this paper. We
will content ourselves with a description which focuses on just a handful of
relevant quantities.

A buyer is primarily interested in whether a bid at a particular price x
can be matched immediately with a lower-priced ask. Let us therefore define
A(t, x) to be the probability that, at time t, the best ask in the order book
is executable at the price x;

A(t, x) ≡ P [α1(t) ≤ x ]. (2)

This is just the cumulative distribution function for the best ask price α1(t).
It will be an increasing function of x, and in general it will also be continuous
from the right with respect to x. (It is easy to confirm that right-continuity
is unaffected by the arrival of future bids or asks.) Its x-derivative Ax(t, x),
if it exists, is the density function for α1(t). In what follows, we assume that
the order book always contains some unexecuted asks at prices above zero
and hence

A(t, 0) = 0, A(t,∞) = 1. (3)

Similarly, let B(t, x) denote the probability that, at time t, the order
book contains at least one bid executable at the price x;

B(t, x) = P [β1(t) ≥ x]. (4)
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This is known as the survivor function for the highest unexecuted bid price
β1(t). It is a decreasing function of x, and is generally continuous from
the left. If B(t, x) is differentiable with respect to x, then −Bx(t, x) is the
density function for β1(t). We assume that the order book always contains
unexecuted bids, and so

B(t, 0) = 1, B(t,∞) = 0. (5)

It is useful now to define

xmin(t) ≡ inf{x : B(t, x) < 1} (6)

xmax(t) ≡ sup{x : A(t, x) < 1}. (7)

As we will see, the prices xmin(t) and xmax(t) have an important interpre-
tation.

Proposition 1. At any time t, and for any x > 0, the following are true:

0 ≤ A(t, x) + B(t, x) ≤ 1 (8)

x > xmin(t) ⇒ 0 ≤ B(t, x) < 1 (9)

x < xmax(t) ⇒ 0 ≤ A(t, x) < 1 (10)

x ≤ xmin(t) ⇒ A(t, x) = 0, B(t, x) = 1 (11)

x ≥ xmax(t) ⇒ A(t, x) = 1, B(t, x) = 0 (12)

Proof. We suppress the t-dependence of the variables, as this is not rele-
vant. To prove (8), we note that A(x) + B(x) is the probability that either
α1 ≤ x or β1 ≥ x (since these possibilities are mutually exclusive). For
(9,10) note that A(x), B(x) are probabilities and hence non-negative. Also,
if y > xmin = inf{x : B(x) < 1} then B(y) < 1 (since B(x) is decreasing).
Similarly, if y < xmax = sup{x : A(x) < 1} then A(y) < 1 (since A(x)
is increasing). For (11), observe that if y ≤ xmin = inf{x : B(x) < 1}
then B(y) = 1 (since B(x) is continuous from the left) and so (8) implies
A(y) = 0. Similarly, if y ≥ xmax = sup{x : A(x) < 1} then A(y) = 1
(since A(x) is continuous from the right) and so (8) gives B(y) = 0, proving
(12).

It follows from (11) and (12) that the highest bid price and lowest ask
price at a given time t are certain to be found between xmin(t) and xmax(t):

α1(t), β1(t) ∈ [xmin(t), xmax(t)]. (13)
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We will refer to this interval as the competitive window, since unexecuted
orders at prices outside this interval are inferior to those inside and are
therefore ineligible to be matched with new orders. Conversely, only those
unexecuted orders at prices within the competitive window have any chance
of being executed against incoming orders.

In principle, if the initial state of the order book is known, it should be
possible to use the dynamical rules R1 and R2 to determine the functions
A(t, x) and B(t, x) and hence the prices xmin(t) and xmax(t) at all subse-
quent times t. Postponing until the next section the question of how this
might be done in practice, we note here that this could provide probabilistic
answers to many questions about the state of the order book. For example,
it could be used to calculate a variety of useful expectation values.

Proposition 2. At any time t, the following are true:

(i) The lowest ask price in the order book has expectation

E[α1(t)] = xmax(t)−

∫ xmax(t)

xmin(t)
A(t, x)dx. (14)

(ii) The highest bid price in the order book has expectation

E[β1(t)] = xmin(t) +

∫ xmax(t)

xmin(t)
B(t, x)dx. (15)

(iii) If B(t, x) is continuous with respect to x at x = y, then the expected
frequency of trades at prices not exceeding y is

λT (t, y) =

∫ y

xmin(t)
[λB(x)dA(t, x) − λA(x)dB(t, x)]. (16)

(iv) The expected overall frequency of trades is

λT (t, xmax(t)) =

∫ xmax(t)

xmin(t)
[λB(x)dA(t, x) − λA(x)dB(t, x)]. (17)

Proof. (i) and (ii) are established by writing the expectations as Riemann-
Stieltjes integrals and then integrating by parts. To prove (iii), we note that
there are two types of trades; those in which a pre-existing ask is matched
with a new bid, and those in which a pre-existing bid is matched with a
new ask. The expected frequency of type 1 trades in the price interval
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(x, x + dx] is λB(x′)dA(t, x) for some x′ ∈ (x, x + dx], where dA(t, x) =
A(t, x+dx)−A(t, x). Hence the expected frequency of such trades at prices
not exceeding y is

∫ y
xmin(t) λB(x)dA(t, x). Similarly, the expected frequency

of type 2 trades in the price interval [x, x+dx) is −λA(x′′)dB(t, x) for some
x′′ ∈ [x, x+dx) and so the expected frequency at prices strictly less than y is
−

∫ y
xmin(t) λA(x)dB(t, x). This is also the expected frequency of type 2 trades

at prices not exceeding y, since the continuity of B(t, x) at x = y means that
there is vanishing probability of a type 2 trade occuring at exactly this price.
Adding the two integrals gives (16). The proof of (iv) immediately follows,
since B(t, x) is everywhere continuous from the left, and is also continuous
from the right at xmax(t) on account of (12).

3 Stationary Solutions

For these results to be useful, the functions A(t, x) and B(t, x) must be
determined. One might hope to do this by deriving and then solving the
evolution equations subject to suitable initial conditions, but in fact it proves
difficult to write down simple evolution equations for A(t, x) and B(t, x).
This is because they contain information only about the distributions of
the best ask price and the best bid price, but their time evolution depends
also on the distributions of the second best ask and bid prices. Similarly,
the time evolution of the distribution functions for the second best prices
depends on the distribution functions for the third best prices, and so on.

Without evolution equations for A(t, x) and B(t, x), it is at first unclear
how to go about finding any stationary solutions. Fortunately, there is
another approach. For each x > 0, let M(t, x) denote the number of queued
asks executable at the price x (i.e. awaiting execution at prices not exceeding
x), and let N(t, x) denote the number of queued bids executable at this
price (i.e. awaiting execution at prices of at least x). The functions M(t, x)
and N(t, x) then contain a full description of the order book. Their time
evolution is governed by the receipt of new bids and offers.

Assuming that the expectations of M(t, x) and N(t, x) are differentiable
functions of t and x, we also define

u(t, x) ≡
∂

∂x
E[M(t, x) ], v(t, x) ≡ −

∂

∂x
E[N(t, x) ]. (18)

Then at time t the number of unexecuted asks in the price range (x1, x2]
and the number of unexecuted bids in the price range [x1, x2) are random
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variables with expectations

E[M(t, x2)−M(t, x1) ] =

∫ x2

x1

u(t, x)dx (19)

E[N(t, x2)−N(t, x1) ] =

∫ x2

x1

v(t, x)dx (20)

respectively. We can think of u(t, x) and v(t, x) as the expected densities of
asks and bids in the order book around the price x.

Theorem. If A(x) is the stationary distribution function for the lowest
unexecuted ask price α1 and B(x) is the stationary survivor function for the
highest unexecuted bid price β1, and A(x) and B(x) are both differentiable
at x, then

∂

∂t
u(t, x) = λ′A(x)[1 −B(x)]− λB(x)A′(x) (21)

∂

∂t
v(t, x) = −λ′B(x)[1−A(x)] + λA(x)B′(x). (22)

Proof. See Appendix A.

Corollary. Suppose that [xmin, xmax] is the competitive window associated
with A(x) and B(x). Then

∂

∂t
u(t, x) = λ′A(x) > 0 ∀x > xmax (23)

∂

∂t
v(t, x) = −λ′B(x) > 0 ∀x < xmin. (24)

Proof. The equalities follow directly from the Theorem when one makes use
of equations (11) and (12). The inequalities follow from the strict mono-
tonicity of the functions λA(x) and λB(x).

The Corollary makes it clear that there can be no solutions that are
stationary outside the competitive window [xmin, xmax]. At prices higher
than xmax, asks accumulate faster than they can be matched with incom-
ing bids, while at prices lower than xmin bids accumulate faster than they
can be matched with incoming asks (as shown by equations (23) and (24)
respectively). Such orders can be regarded as uncompetitive as they never
result in trades, and are of little interest.
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As we are concerned with what takes place inside the competitive win-
dow, we only need stationary solutions u(x) and v(x) inside this window.
The Theorem then implies that A(x) and B(x) must satisfy the coupled
first-order linear differential equations

A′(x) =
λ′A(x)

λB(x)
[1−B(x)] (25)

B′(x) =
λ′B(x)

λA(x)
[1−A(x)]. (26)

for all x ∈ [xmin, xmax]. They must also satisfy the boundary conditions

A(xmin) = 0, B(xmin) = 1, A(xmax) = 1, B(xmax) = 0 (27)

that follow from (11) and (12).
This is not a conventional boundary-value problem, as xmin and xmax

are not given but must be deduced along with A(x) and B(x). To proceed,
first note that the quantity

κ ≡ [1−B(x)]λA(x) + λB(x)[1−A(x)] (28)

is independent of x over the competitive window, on account of equations
(25) and (26). Putting x = xmin and then x = xmax gives

κ = λB(xmin) = λA(xmax). (29)

This identity establishes a useful connection between xmin and xmax. More-
over, making use of the identities (25) and (26) to evaluate the integrals
(16) and (17), one finds that the expected frequency of trades at prices not
exceeding x is now

λT (x) = λA(x)[1−B(x)] x ∈ [xmin, xmax], (30)

and the overall frequency of trades is κ = λT (xmax) .
The next step is to define

z(x) ≡
1−B(x)

1−A(x)
. (31)

Then (25) and (26) imply that z(x) must satisfy the Ricatti differential
equation

dz

dx
= −

λ′B(x)

λA(x)
+

λ′A(x)

λB(x)
z2 (32)
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everywhere within the competitive window. Forsyth (1929) shows that
such an equation admits a family of solutions of the form z = [cp(x) +
q(x)]/[cr(x) + s(x)], with each solution characterised by a different value of
the constant c. Given xmin ∈ (0,∞), let z(x) be the particular solution
satisfying the initial condition

z(xmin) = 0. (33)

Typically, this solution will have a pole at some point xmax > xmin. (If there
is more than one pole on (xmin,∞) we choose xmax to be the smallest.) Then
z(x) will be an increasing function on the interval [xmin, xmax).

With xmax defined in this way, there is no general reason why the value
of λB(xmin) should coincide with that of λA(xmax) as required by equation
(29). However, we suppose that xmin is specifically chosen to ensure this
coincidence. We can then define κ by equation (29), and use equation (28)
to obtain

A(x) = 1−
κ

λB(x) + z(x)λA(x)
, B(x) = 1−

κz(x)

λB(x) + z(x)λA(x)
(34)

for x ∈ [xmin, xmax). It is easy to confirm that these functions do indeed
satisfy the coupled equations (25,26) as well as the boundary conditions (27),
and hence also the inequalities (9,10). Moreover, for all x ∈ (xmin, xmax) we
have λB(x) ≤ κ and λA(x) ≤ κ and hence

1−A(x)−B(x) =
κ− λB(x) + z(x)[κ − λA(x)]

λB(x) + z(x)λA(x)
≥ 0 (35)

in agreement with (8).
It has been shown that all trades take place between two limiting prices

xmin and xmax, which are determined by the form of the supply and demand
functions. Clearly, xmin and xmax correspond to what technical analysts
refer to as the “support” and “resistance” levels. At prices below the support
level xmin, buy orders accumulate faster than they can be executed (as shown
by (24)) and build up into a solid wall. This prevents any new sell order
from being executed at a price less than xmin. Similarly, above the resistance
level xmax, sell orders accumulate to form an impenetrable wall, ensuring
that no buy orders are executed at prices higher than xmax.

The above procedure determines not only the resistance and support
levels xmin and xmax, but also the stationary distributions of the best bid,
the best ask and the transaction price. This is now illustrated with an
example.
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4 Constant Elasticities of Supply and Demand

Consider a market in which the elasticity of supply and elasticity of demand
are both price-independent, with values ηa > 0 and ηb > 0 respectively. The
supply and demand functions then have the form

λA(x) = kxηa , λB(x) = kx−ηb (36)

for some positive constant k. (We suppose the numeraire has been chosen
so that the equilibrium price xE is exactly 1, and hence λA(1) = λB(1).)

If ηb 6= ηa then the general solution of (32) can be written in the form

z(x) = ηbx
−ηa−ηb

min

(x/xmin)−ηb − (x/xmin)−ηa

ηa(x/xmin)ηb − ηb(x/xmin)ηa
(37)

with xmin > 0 to be specified. This function has a zero at xmin and diverges
as x → xmax = xmin(ηa/ηb)

1/(ηa−ηb). In order that λA(xmax) = λB(xmin) =
κ as required by (29), it is necessary to choose

xmin =

(

ηa

ηb

)−
ηa

ηa2
−ηb

2

xmax =

(

ηa

ηb

)

ηb
ηa2

−ηb
2

κ = k

(

ηa

ηb

)

ηaηb
ηa2

−ηb
2

. (38)

Equations (34) then give

A(x) = 1−
1

ηa − ηb

[

ηa

(

x

xmin

)ηb

− ηb

(

x

xmin

)ηa
]

(39)

B(x) = 1−
1

ηa − ηb

[

ηa

(

x

xmax

)−ηb

− ηb

(

x

xmax

)−ηa
]

(40)

for x ∈ [xmin, xmax]. It is easily verified that these functions do indeed satisfy
the differential equations (25,26) on this interval, along with the boundary
conditions (27).

Observe that B(x) = A(c2/x) where c2 = xminxmax = (ηa/ηb)
−1/(ηa+ηb).

This demonstrates the presence of a symmetry between the distribution of
bids and asks in the order book. Moreover, since A(c) = B(c), the order
book is equally likely to contain an ask at a price ≤ c or a bid at a price
≥ c.

The lowest ask price α1 and highest bid price β1 have probability density
functions A′(x) and −B ′(x), both of which are supported on the competi-
tive window [xmin, xmax]. These density functions can be used to calculate

12



expectations of any functions of α1 or β1. For example,

E[α1] =
ηaηbxmin + σxmax

(ηa + 1)(ηb + 1)
(ηa 6= ηb) (41)

E[β1] =
ηaηbxmax − σxmin

(ηa − 1)(ηb − 1)
(ηa 6= 1 6= ηb, ηa 6= ηb) (42)

where σ ≡ (ηa
ηaηb

−ηb)
1

ηa−ηb .
Given any x ∈ [xmin, xmax], the frequency of trades at prices less than x

can be obtained using (30) and is found to be

λT (x) =
κηb

ηa − ηb

[

(

x

xmin

)ηa−ηb

− 1

]

(ηa 6= ηb). (43)

Since κ = λT (xmax) is the overall frequency of trades, the density function
for the price of an arbitrary trade is

λ′T (x)

κ
= (ηa

ηaηb
ηb)

1
ηa+ηb xηa−ηb−1 (ηa 6= ηb) (44)

if x ∈ [xmin, xmax], or zero otherwise. The transaction price XT of a ran-
domly chosen trade then has expectation

E[XT ] =
ηaxmax − ηbxmin

1 + ηa − ηb
. (45)

For completeness, let us now consider the special case when the elastic-
ities of demand and supply are equal: ηb = ηa = η. In this case, the general
solution of (32) can be written in the form

z(x) =
η ln(x/xmin)

x2η[1− η ln(x/xmin)]
. (46)

This function has a zero at xmin and diverges at xmax = e1/ηxmin. Requiring
λB(xmin) = λA(xmax) = κ, we get

xmin = e−1/2η , xmax = e1/2η , κ = ke1/2 (47)

and so equations (34) yield

A(x) = 1− e1/2xη
(

1

2
− η lnx

)

x ∈ [xmin, xmax] (48)

B(x) = 1− e1/2x−η
(

1

2
+ η lnx

)

x ∈ [xmin, xmax]. (49)
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(Once again, B(x) = A(c2/x) where now c2 = xminxmax = 1.) This time,
the expected price of the lowest unexecuted ask works out to be

E[α1] =
η2

(η + 1)2
e
− 1

2η +
ηe

(η + 1)2
e

1
2η (50)

while the expected price of the highest unexecuted bid is

E[β1] =











η2

(η−1)2 e
1
2η − ηe

(η−1)2 e
− 1

2η η 6= 1

1
2e

1
2 η = 1

. (51)

From (30), the expected frequency of trades at prices not exceeding x is

λT (x) = ke1/2
(

1

2
+ η lnx

)

for x ∈ [e−1/2η , e1/2η ] (52)

and so the density function for the price of an arbitrary trade is

λ′T (x)

κ
=

η

x
for x ∈ [e−1/2η , e1/2η ]. (53)

The transaction price of a random trade is then

E[XT ] = 2η sinh(
1

2η
) = 1 +

1

3!(2η)2
+

1

5!(2η)4
. . . , (54)

which always exceeds the equilibrium price xE = 1.
Figure 1 shows the form of the supply and demand functions λA(x),

λB(x) for the case ηa = ηb = 1, while figures 2, 3 and 4 show the resulting
density functions A′(x), −B′(x) and λ′T (x)/κ for the best ask, the best
bid and the transaction price. (Note that qualitatively similar graphs are
obtained for any positive values of ηa and ηb.)

We conclude this section by observing that the functions A(x) and B(x)
given by (39) and (40) are the unique solutions to (25,26) and (27) for
any supply and demand functions λA(x) and λB(x) having the specified
elasticities ηa, ηb inside the interval [xmin, xmax], regardless of their values
elsewhere. It follows that the stationary distributions of the transaction
prices and the best bid and ask prices are determined entirely by the values
of ηa and ηb within the competitive window.

For general supply and demand functions, elasticities may vary slightly
with price. However, in most markets price fluctuations are relatively small
and so the elasticities can be regarded as approximately constant. In this
context, the constant-elasticity example discussed above has broad appli-
cability. Indeed, provided the competitive window is narrow, it is natural
to assume that the elasticities remain approximately constant within it and
that A(x) and B(x) will be well approximated by expressions (39) and (40).
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Figure 1: The supply function λA(x) and demand function λB(x) with k =
ηa = ηb = 1
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5 Narrow Spreads

Real financial markets are characterised by very narrow bid-ask spreads
– typically less than 1% of the equilibrium price. An application of the
model to such a market should therefore be tailored to give a very narrow
competitive window. Within this narrow window it seems reasonable to
assume that the elasticities of supply and demand ηa,ηb will hardly vary and
may be regarded as constants, and so the analysis of the previous section
will be applicable. In particular, the two parameters ηa, ηb (defined here
as the values of the elasticities at the equilibrium price) should completely
determine the distribution of bids, asks and trades within the window of
competition.

It is apparent from (38) that the competitive window [xmin, xmax] shrinks
as ηa and ηb grow. Hence, a narrow window of competition is indicative of
large values of ηa and ηb. In order to focus on the features associated with
arbitrarily large elasticities, it will helpful to consider the dependence of our
results on the ratio of the elasticities,

ν ≡ ηa/ηb. (55)

We are interested in the distributions of bids, asks and trades within
the competitive window as this becomes very narrow, and so it is natural
to rescale [xmin, xmax] to the unit interval [0, 1]. The form of equations
(39),(40),(48) and (49) suggests that a logarithmic scaling is more appropri-
ate than a linear one, and so we define

s(x) ≡
ln(x/xmin)

ln(xmax/xmin)
. (56)

The competitive window [xmin, xmax] is then represented by values of s in
the interval s ∈ [0, 1].

Expressing (39) and (40) in terms of s and then differentiating with
respect to s, we find that the density functions for sα = s(α1), sβ = s(β1)
and sT = s(XT ) are respectively

pα(s) = dA
ds =







ν ln(1/ν)
(1−ν)2

(

ν−
s

1−ν − ν−
νs

1−ν

)

ν 6= 1

ses ν = 1

(57)

pβ(s) = −dB
ds =











ν ln(1/ν)
(1−ν)2

(

ν−
1−s
1−ν − ν−

ν(1−s)
1−ν

)

ν 6= 1

(1− s)e(1−s) ν = 1

(58)
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pT (s) = 1
κ

dλT

ds =







ln(1/ν)
1−ν νs ν 6= 1

1 ν = 1

(59)

for s ∈ [0, 1], with each vanishing outside this interval.
Using these density functions, one finds that the expectations of sα, sβ

and sT are

E[sα] =

{

ν
−

1
1−ν −ν

−
ν

1−ν +ν−ν−1

ln(1/ν) ν 6= 1
e− 2 ν = 1

(60)

E[sβ ] =

{

1− ν
−

1
1−ν −ν

−
ν

1−ν +ν−ν−1

ln(1/ν) ν 6= 1
3− e ν = 1

(61)

E[sT ] =

{

1
ln(1/ν) −

ν
1−ν ν 6= 1

1
2 ν = 1

(62)

while that the overall frequency of transactions is

κ = kν
− ν

1−ν2 (63)

and the value of s corresponding to the equilibrium price is

sE = s(xE) =
ν

1 + ν
. (64)

We observe that the density functions pα(s), pβ(s) and pT (s) (and hence
all the expectations) are determined entirely by a single exogenous param-
eter; namely the ratio of elasticities ν = ηa/ηb. Figures 5, 6, 7, and 8 show
the form of these density functions for various choices of ν.

In fact, the remaining parameter ν has a very simple interpretation.
Suppose that a proportion q of all market participants currently own at least
one unit of the asset being traded. Suppose also that there are dN market
participants who value the asset at a price between x and x + dx. At the
price x, these individuals would regard the asset as underpriced, but if the
price rises to x+dx they will regard it as overpriced. Hence, a price rise from
x to x + dx will decrease by dN the number of potential buyers. It will also
increase by dN the number who regard selling as a favourable transaction;
but since only a fraction q of these actually have anything to sell, there
will be an increase of only qdN in the number of potential sellers (provided
there is no short-selling). Assuming that potential buyers and seller are
equally likely to submit an order to the exchange over a short time interval,
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Figure 5: The steady-state density functions for the scaled quote and exe-
cution prices, with ν = 1.
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Figure 6: The steady-state density functions for the scaled quote and exe-
cution prices, with ν = 0.4.
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Figure 7: The steady-state density functions for the scaled quote and exe-
cution prices, with ν = 0.1.
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Figure 8: The steady-state density functions for the scaled quote and exe-
cution prices, with ν = 0.025.
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it follows that the resulting increase λ′A(x)dx in the frequency of sell orders
will be smaller by a factor of q than the corresponding decrease −λ′B(x)dx
in the frequency of buy orders, and consequently q = −λ′A(x)/λ′B(x) = ν.
Thus, the remaining exogenous parameter ν is simply the proportion of the
market participants currently holding at least one unit of the asset.

It follows that ν cannot exceed 1, unless there is extensive short-selling,
or the traded asset is a foreign currency which is more widely held than the
numeraire currency. Except in these two special cases, therefore, trades at
the top end of the competitive window (s = 1) will always be less frequent
than those at the bottom end (s = 0) by a factor of pT (1)/pT (0) = ν.

All the above results are exact, and do not depend at all on the average
elasticity η = (ηa + ηb)/2. Indeed, the only apparent significance of this
quantity is that it determines the size of the competitive window. For large
values of η (such as those occuring in real financial markets), (38) gives

xmin ' 1−
ν ln(1/ν)

2η(1 − ν)
, xmax ' 1 +

ln(1/ν)

2η(1 − ν)
(65)

and the scaling (56) becomes linear

s '
x− xmin

xmax − xmin
, x ' (1− s)xmin + sxmax. (66)

In the large-η limit, these approximations become exact and s may be re-
garded simply as the difference (in appropriate units) between a given price
and xmin.

In practise it is often difficult to determine the elasticities of supply and
demand or even the precise equilibrium price, and it may be more convenient
to express the density functions in a form that depends only on readily
determined quantities such as xmin, xmax and ν. In the high-elasticity limit
where the approximation (66) is exact, we find

pα(x) =











µν
1−ν

[

eµ(x−xmin) − eµν(x−xmin)
]

ν 6= 1

µ2(x− xmin)eµ(x−xmin) ν = 1

(67)

pβ(x) =











µν
1−ν

[

eµ(xmax−x) − eµν(xmax−x)
]

ν 6= 1

µ2(xmax − x)eµ(xmax−x) ν = 1

(68)
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pT (x) =







µeµ(1−ν)(x−xmin) ν 6= 1

1 ν = 1

(69)

for x ∈ [xmin, xmax], where

µ =











ln(1/ν)
(1−ν)(xmax−xmin) ν 6= 1

1
(xmax−xmin) ν = 1

. (70)

6 Conclusions

Perhaps the most striking prediction of the model is the restriction of market
price fluctuations to the competitive window [xmin, xmax]. This feature is
not indicative of an absence of supply or demand outside this interval, but
arises as a direct consequence of the market microstructure.

It is natural to ask whether the competitive window is merely an artefact
of the properties L1-L6 assumed in the construction of the model, or the
assumed form of the supply and demand functions, or whether it might also
emerge in more realistic models. Although it is not yet possible to give an
unequivocal answer to this question, a strong argument can be made that
the competitive window should be a generic feature of limit order markets
with sufficient liquidity and stability.

While all of the properties L1-L6 were required in the derivation of the
mathematical results presented earlier, few of them appear to play an es-
sential role in the basic process leading to the formation of the competitive
window; that is, the accumulation of uncompetitive bids and asks into im-
penetrable walls restricting the range of prices at which new orders can be
executed. Provided that order arrival rates remain reasonably steady dur-
ing the period of interest, and provided the cancellation rate of unexecuted
orders is fairly low, it is difficult to imagine what might prevent this pro-
cess. Indeed, evidence for the existence of competitive windows in real limit
order markets is provided by technical analysts, who rely extensively on the
existence of support and resistance levels between which price fluctuations
are temporarily contained.

The model also predicts the stationary distributions of transaction prices
and of the best bid and ask prices. In particular, provided the spread is nar-
row, it predicts that the form of these distributions within the competitive
window should depend on a single parameter which can be identified with
the proportion of market participants owning the asset.
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These results were derived from the assumptions used to define the
model, but again it seems unlikely that their qualitative features would
be dramatically affected if certain of these assumptions were relaxed. For
example, relaxing assumptions L4 and L6 to allow gradual changes in sup-
ply and demand or the cancellation of orders would limit the build-up of
unfilled bids and asks at uncompetitive prices and thus blur the edges of
the competitive window, but should not otherwise significantly change the
form of the distributions. Simlarly, relaxing assumptions L2 and L3 to ac-
commodate variable order quantities and discrete prices should not result in
dramatically different distributions.

It is somewhat harder to anticipate how the predictions of the model
would be affected if we dropped assumption L5, and allowed opportunistic
traders to take advantage of temporary anomalies in the order book. In
principle, the removal of this restriction could result in a complicated game-
theoretic feedback process between the order book and the order submission
rates. However, there are several reasons why this type of opportunism may
be less prevalent in real limit order markets than might be imagined:

• on some exchanges, detailed information about the current state of
the order book is not disclosed, or is restricted to certain classes of
traders;

• increasing numbers of market participants are retail investors who may
not have access to fully up-to-date information about the state of the
order book, and whose orders may not reach the exchange quickly
enough for them to take advantage of temporary order book anomalies.

• in the absence of clear price trends, opportunities arising from order-
book anomalies will be relatively infrequent;

• instead of continually monitoring the order book for opportunities,
many traders may prefer to submit limit orders that will automatically
take advantage of such opportunities as they arise.

For these reasons, it is tempting to speculate that opportunistic responses
to order book anomalies may have only a modest effect on real limit or-
der markets. If so, then assumption L5 can be also regarded as relatively
innocuous.

However the predictions of the model are certainly influenced by assump-
tion L1, which protects the market from domination by powerful individuals
or conglomerates. It is this assumption which makes the statistical approach
feasible, and spares us the more difficult task of modelling the actions of the

23



dominant market players. In general, statistical models such as the one pre-
sented here will only be applicable to markets that are not dominated by a
small number of powerful participants.

Despite this discussion, it rermains unclear how realistic the model is.
Hopefully, future work will reveal which of the assumptions L1-L6 are mis-
leading oversimplifications, and which can be safely incorporated into a more
realistic market model.

A Proof of Theorem

Suppose a new ask arrives during a brief time interval [t, t + ∆t]. If the
new ask price α is less than or equal to the highest unexecuted bid price β1,
these two orders are matched and executed and so, for x ≤ β1, the number
N(t, x) of remaining bids executable at the price x will decrease by one.
Alternatively, if α > β1, then no match is possible and the new ask takes its
place in the queue, increasing by one the number M(t, x) of asks executable
at a given price x ≥ α. For an arbitrary choice of x > 0, the changes in the
values of M(t, x) and N(t, x) due to the arrival of the new ask are therefore

∆M = I(x ≥ α)I(α > β1), ∆N = −I(x ≤ β1)I(α ≤ β1) (71)

where I denotes the indicator function. Similarly, the arrival of a new bid
at a price β has the effect

∆M = −I(x ≥ α1)I(β ≥ α1), ∆N = I(x ≤ β)I(β < α1). (72)

These expressions precisely encapsulate the dynamical rules R1 and R2.
During an infinitesimal time interval ∆t, there is a probability λA(x)∆t

of receiving a new ask at a price not exceeding x, and a probability λB(x)∆t
of receiving a new bid at a price of at least x. (There is a negligible proba-
bility that more than one order will be received.) The expected increases in
the quantities M and N over this time interval are hence found to be

E[∆M ] = {I(x ≥ β1)[λA(x)− λA(β1)]− I(x ≥ α1)λB(α1)}∆t (73)

E[∆N ] = {I(x ≤ α1)[λB(x)− λB(α1)]− I(x ≤ β1)λA(β1)}∆t. (74)

In the limit ∆t → 0, this gives

∂

∂t
E[M(t, x)] = E[I(x ≥ β1)(λA(x)− λA(β1))]−E[I(x ≥ α1)λB(α1)] (75)

∂

∂t
E[N(t, x)] = E[I(α1 ≥ x)(λB(x)− λB(α1))]−E[I(β1 ≥ x)λA(β1)] (76)
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where we have now taken expectations with respect to α1 and β1 to accom-
modate situations in which these prices are not known exactly.

We know that α1(t) has distribution function A(x) while β1(t) has sur-
vivor function B(x), and so the last two equations can be written as

∂

∂t
E[M(t, x)] = −

∫ x

0
[λA(x)− λA(b)]dB(b) −

∫ x

0
λB(a)dA(a) (77)

∂

∂t
E[N(t, x)] =

∫ ∞

x
[λB(x)− λB(a)]dA(a) +

∫ ∞

x
λA(b)dB(b). (78)

If A′(x) and B′(x) both exist, then differentiating with respect to x gives

∂

∂t
u(t, x) = λ′A(x)[1−B(x)]− λB(x)A′(x) (79)

−
∂

∂t
v(t, x) = λ′B(x)[1 −A(x)]− λA(x)B′(x) (80)

as claimed.

B The Theorem of Domowitz & Wang

In Appendix A of Domowitz and Wang (1994) (hereafter DW), the authors
attempt to derive the steady-state conditional probability distribution for
the numbers {Yj+1, . . . , YR} of unexecuted asks at prices {pj+1, . . . , pR},
given that the highest bid price Bm currently has the value pj . Their ar-
gument is based on the assertion that the steady-state distribution satisifes
the following condition:

“during a small interval ∆t, the probability of Yi (j +1 ≤ i ≤ R)
increasing from yi to yi+1 must equal that of Yi decreasing from
yi + 1 to yi”.

In fact this statement is correct only in the absence of conditions on other
variables that may be correlated with Yi. As we will see, it is not generally
true when conditions are placed on the highest bid price Bm, as then one
must also take into account the possibility of changes in Bm.

To see that the quoted assertion is true in the absence of conditions on
other variables, we note that only the following instantaneous changes in
the value of Yi are possible:

Yi → Yi + 1, Yi → Yi − 1. (81)
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Hence, if λ(yi; yi ± 1)∆t is the probability of observing a transition from
Yi = yi to Yi = yi ± 1 during a short time interval ∆t, irrespective of the
value of Bm, then the increase of the probability P (Yi = yi) over this interval
is just

∆P (Yi = yi) = λ(yi − 1; yi)∆t + λ(yi + 1; yi)∆t
−λ(yi; yi − 1)∆t − λ(yi; yi + 1)∆t ∀yj ≥ 0 (82)

provided we define λ(−1, 0) ≡ λ(0,−1) ≡ 0. Summing from yi = 0 to yi = n
(with 0 ≤ n ≤ R) then gives

∆P (Yi ≤ n) = λ(n + 1;n)∆t− λ(n;n + 1)∆t (83)

and so for the steady-state distribution we have

λ(n;n + 1)∆t = λ(n + 1;n)∆t (84)

in agreement with the quoted assertion.
If Hn denotes the subset of the sample space in which Yi ≤ n, then this

argument can be summarised by the following two observations:

• the steady-state probability of a transition from Hn to Hn must be
the same as the probability of a transition from Hn to Hn

• a transition Hn →Hn necessarily corresponds to a change in the value
of Yi from yn to yn + 1, while a transition Hn →Hn corresponds to a
change in the value of Yi from yn + 1 to yn.

The second observation reflects the fact that the possible values of Yi form a
one-dimensional lattice, with transitions only possible between neighbouring
points on this lattice. Hence, there is only one way out of Hn and one
way into Hn; and in the steady-state distribution there must be the same
frequency of transitions in both directions.

The situation is more complicated when the highest bid price Bm is also
specified, as now we must consider transition rates between neighbouring
points in the two-dimensional lattice of possible values of Yi and Bm. There
is more than one way into any subset of this lattice, and more than one way
out, and so the balance between flow in and flow out does not provide a
simple equality between a pair of transition rates. Consequently, the quoted
assertion does not hold.

More explicitly; when conditions are placed on the value of Bm, we must
take into account the possibility of transitions

Bm → Bm′ (Bm′ 6= Bm). (85)
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in addition to those described in (81). Let λ(yi, pj ; yi ± 1; pj)∆t denote the
probability that, during a short time interval ∆t, the value of Yi changes
from yi to yi ± 1 while Bm has the value pj . Also, let λ(yi, pj; yi; p

′
j) denote

the probability that, during this interval, the value of Bm changes from pj

to p′j while Yi has the value yi.
The increase of the joint probability P (Yi = yi , Bm = pj ) over this

time interval is then just

∆P (Yi = yi, B
m = pj) = λ(yi − 1, pj ; yi, pj)∆t + λ(yi + 1, pj ; yi, pj)∆t

−λ(yi, pj ; yi − 1, pj)∆t − λ(yi, pj; yi + 1, pj)∆t

+
∑

j′ 6=j

λ(yi, p
′
j; yi, pj)∆t−

∑

j′ 6=j

λ(yi, pj ; yi, p
′
j)∆t.

(86)

This time, summing from yi = 0 to yi = n (with 0 ≤ n ≤ R) gives

∆P (Yi ≤ n,Bm = pj) = λ(n + 1, pj ;n, pj)∆t− λ(n, pj;n + 1, pj)∆t

+
n

∑

i=0

∑

j′ 6=j

[λ(yi, p
′
j ; yi, pj)− λ(yi, pj ; yi, p

′
j)]∆t

(87)

and so, for the steady-state distribution, the time-independence of the joint
probability P (Yi ≤ n,Bm = pj) implies that

λ(n, pj ;n + 1, pj)∆t = λ(n + 1, pj ;n, pj)∆t + E(n, j)∆t (88)

where we have defined

E(n, j) ≡
n

∑

i=0

∑

j′ 6=j

[λ(yi, p
′
j ; yi, pj)− λ(yi, pj ; yi, p

′
j)]. (89)

In Appendix 2 of DW, it is implicitly assumed that the quantity E(n, j)
vanishes. However this assumption is unfounded. Indeed, one can easily
construct counter-examples where E(n, j) takes non-zero values.

The non-vanishing of E(n, j) implies that the probability of Yi (j + 1 ≤
i ≤ R) increasing from yi to yi+1 while Bm has the value pj is not generally
equal to that of Yi decreasing from yi +1 to yi while Bm = pj. The assertion
quoted above is therefore untrue when conditions are placed imposed on Bm

as well as Yi, which is the case in Appendix 2 of DW. The proof of Theorem
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1 in DW is therefore fallacious. Moreover, since this theorem was used to
prove all the other theorems in this paper and in Bollerslev, Domowitz and
Wang (1997), they are also invalid.

One might attempt to correct the error in DW by including the non-
vanishing quantity E(n, j) in the expressions dereived therein. Continuing
to borrow the notation of DW, let λa[i, j] denote the arrival rate of new asks
at the price pi, given that Bm = pj ; let µa[i, j] denote the cancellation rate
for asks at the price pj, given that Bm = pj; let γb[i, j] denote the arrival
rate of hits (i.e. orders to buy at the price pi if this is the current lowest ask)
given that Bm = pj , and let λb[i, k] denote the arrival of rate of new bids at
the price pi, given that the lowest ask price Am currently has the value pk.
Then the transition rate of the pair (Yi, B

m) from the values (yi + 1, pj) to
the new values (yi, pj) is given by

λ(yi + 1, pj ; yi, pj) = P (Y1 = . . . = Yi−1 = 0, Yi = yi + 1, Bm = pj)λ
b[i, i]

+P (Y1 = . . . = Yi−1 = 0, Yi = yi + 1, Bm = pj)γ
b[i, j]

+µa[i, j](yi + 1)P (Yi = yi + 1, Bm = pj).
(90)

The first term on the right-hand side represents the rate at which asks at
the price pi are crossed against newly received bids at the same price, while
the second term represents the rate at which asks at the price pi are picked
off by hits, and the third term represents the rate at which asks at the price
pi are currently being cancelled.

Similarly, the transition rate of the pair (Yi, B
m) from the values (yi, pj)

to the new values (yi + 1, pj) is given by

λ(yi, pj ; yi + 1, pj) = λa[i, j]P (Yi = yi, B
m = pj) (91)

where the term on the right-hand side represents the arrival rate of new bids
at the price pi.

Dividing both sides of equation (88) by the probability P (Bm = yj)
and using the expressions obtained above for λ(yi, pj; yi + 1, pj) and λ(yi +
1, pj ; yi, pj), we then obtain the identity

λa[i, j]∆t P (Yi = yi|B
m = pj)

= (λb[i, i] + γb[i, j])∆t P (Y1 = . . . = Yi−1 = 0, Yi = yi + 1|Bm = pj)
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+µa[i, j] (yi + 1)∆t P (Yi = yi + 1|Bm = pj)

+
E(yi, j)∆t

P (Bm = yj)
. (92)

This is the corrected form of the first equation displayed in Appendix
2 of DW, from which the last term had been omitted. Unfortunately the
inclusion of this correction term considerably complicates the remainder of
the analysis attempted by these authors, and invalidates their results.

C The Inverse Problem

This Appendix addresses the problem of whether it is possible to deduce the
form of the supply and demand functions λB(x) and λA(x) from knowledge
of the distributions of the best ask and bid prices.

Suppose one knows the equilibrium distribution functions A(x), 1−B(x)
of the highest unexecuted bid and the lowest unexecuted ask on some price
interval [xmin, xmax] where all trades take place. It is convenient to define

F (x) ≡ 1−A(x), G(x) = 1−B(x). (93)

According to equations (27), these functions must satisfy the boundary con-
ditions

F (xmin) = 1, G(xmin) = 0
F (xmax) = 0, G(xmax) = 1. (94)

while equations (25,26) imply that they must also satisfy the Neumann
boundary conditions

F ′(xmin) = 0, G′(xmax) = 0 (95)

If λT (x) denotes the average frequency of trades at prices less than x,
then (30) and (28) immediately give

λA(x) =
λT (x)

G(x)
, λB(x) =

κ− λT (x)

F (x)
(96)

where we can take κ = λT (xmax). Requiring these expressions to satisfy
equations (25,26) leads to the consistency condition

d

dx

(

λT (x)

F (x)G(x)

)

= −
κF ′(x)

F (x)2G(x)
(97)
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which can be integrated to give

λT (x) =
F (x)G(x)λT (x0)

F (x0)G(x0)
+ κF (x)G(x)

∫ x

x0

1

G(s)

(

d

ds

1

F (s)

)

ds (98)

for any x, x0 ∈ (xmin, xmax). It then follows from (96) that

λA(x) = κF (x)

{

ρ(x0)

F (x0)G(x0)
+

∫ x

x0

1

G(s)

(

d

ds

1

F (s)

)

ds

}

(99)

λB(x) = κG(x)

{

1− ρ(x0)

F (x0)G(x0)
+

∫ x

x0

1

F (s)

(

d

ds

1

G(s)

)

ds

}

(100)

where ρ(x0) ≡ λT (x0)/κ is the average proportion of trades that take place
at prices less than x0. Thus, we see that full determination of the supply
and demand functions λA(x) and λB(x) on the interval [xmin, xmax] requires
knowledge not just of the functions F (x) and G(x), but also the two param-
eters κ and ρ(x0).

Alternatively, taking x0 → xmin in the expression for λA(x) and x0 →
xmax in the expression for λB(x), we can write

λA(x) = F (x)

{

λA(xmin)− κ

∫ x

xmin

F ′(s)

G(s)F (s)2
ds

}

(101)

λB(x) = G(x)

{

λB(xmax) + κ

∫ xmax

x

G′(s)

F (s)G(s)2
ds

}

(102)

where the three quantities λA(xmin), λB(xmax) and κ are constrained to
satisfy the identity

λA(xmin) + λB(xmax) = κ

{

1 +

∫ xmax

xmin

(

1

F (s)
− 1

)

d

ds

(

1

G(s)
− 1

)

ds

}

(103)
which can be shown to follow from (28).
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