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Part I - The Classical Problem on R"

1. Calderon’s Impedance Tomography Problem

2. Anisotropic Medium and Non-unigueness

3. Sylvester-Uhlmann Solution for Isotropic Medium
e Boundary Integral Identity
o Complex Geometric Optics



Part II - The Manifold Setting

1. Geometric Aspects of PDE

2. Some Geometric Techniques



e Material 2 with conductivity ~(x)

e In general the material is anisotropic (muscle, timber, etc.)
e Conductivity depends on direction

e v(x) an n x n positive definite matrix

e Special isotropic cases (water, breast tissue), v(z) = v(x) Inxn

scalar
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How do we determine v(x) in a non-invasive way?

T his question is relevant in:

e Breast tumour detection

e Detecting impurities in steel

e Gas/oil exploration



Electric Impedance Tomography (EIT):

We apply a voltage on the boundary.




Electric Impedance Tomography (EIT):

‘This surface voltage induces an internal voltage.




Electric Impedance Tomography (EIT):

The voltage then gives a surface electric flux (current)

which we can measure.



Electric Impedance Tomography (EIT):

The lab technician can only measure what happens on the outside.

conductivity = ¥

and record the resulting data:

Input Voltage | f1| fo | f3 | etc...

Output Current | ¢1 | ¢p | c3 | etc...



Electric Impedance Tomography (EIT):

e T he data depend on the conductivity ~.

e From the recorded data we recover the conductivity

10



A real life experiment. Data collected with 32 electrodes:

The machine is in Rensselaer Polytechnic Institute, USA.
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Numerical reconstruction from data:

Courtesy of Dr. Siltanen of Finnish Centre of Excellence in Inverse Problems Research
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e [ he pictures look reasonable but....

e Two different conductivities could potentially give identical mea-
surements.

e Need to prove that this doesn’'t happen.
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Mathematical Formulation

Let Q2 C R™ be a bounded domain and v(xz) be a positive definite con-
ductivity matrix.
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Mathematical Formulation

Let Q2 C R™ be a bounded domain and v(x) be a positive definite con-
ductivity matrix.

e For all boundary voltage f € C°°(052), the induced internal voltage
U f solves the conductivity equation

V-yVur =0, uylpo=f
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Mathematical Formulation

Let Q2 C R™ be a bounded domain and v(x) be a positive definite con-
ductivity matrix.

e For all boundary voltage f € C°°(9%2), the induced internal voltage
U f solves the conductivity equation

V-yVur =0, wuylpo=f

e Define the linear operator A, : C°(02) — C*°(0S2) by

Ny J —  (n-yVuy) sq

boundary voltage boundary current
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Mathematical Formulation

Let 2 C R™ be a bounded domain and ~(x) be a positive definite con-
ductivity matrix.

e For all boundary voltage f € C°°(9L2), the induced internal voltage
u s solves the conductivity equation

VoyVuy =0, uylog=f

e Define the linear operator A, : C°(02) — C*°(0S2) by

AV — n-vyVu
. f (n -~ u ) lae
boundary voltage boundary current

e N\, is the Dirichlet-Neumann (voltage-current) map.
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Mathematical Formulation

Let 2 C R™ be a bounded domain and v(xz) be a positive definite con-
ductivity matrix.

e For all boundary voltage f € C°°(9%2), the induced internal voltage
u s solves the conductivity equation

e Define the linear operator Ay : C°(02) — C°°(02) by

A~ — n-vyVu
- f (0~ & ) loe
boundary voltage boundary current

e N\, is the Dirichlet-Neumann (voltage-current) map.

e Dependence of Ay, on v NONLINEAR.
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Calderdon’s Problem:

Does the operator Ay uniquely determine ~7?
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Calderon’s Problem:

Does the operator Ay uniquely determine ~7
(ie. Ayy =Ny, = 1 =27)

For general anisotropic (matrix valued) ~ the answer is NO.
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Counter-example:

o Let F: Q2 — Q2 be a diffeomorphism with F' |go= Id.

21



Counter-example:

o Let F': Q2 — 2 be a diffeomorphism with F |go= Id.

T

o Define v = Fyy 1= detDF
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Counter-example:

o Let F: Q2 — Q2 be a diffeomorphism with F |5o= Id.

T
e Define v = Fyvy := lﬁggﬁ o F—1,

e Then A5 = A,

23



Counter-example:

Let F': 2 — Q2 be a diffeomorphism with F' |5o= Id.

T
DFyDFT o1

Define v = Fyy = detDF

Then /\5 = Ny
Intuition from differential geometry

Harmonic functions are invariant under pull-back by isometries.
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Counter-example:

o Let F: Q2 — Q2 be a diffeomorphism with F |go= Id.

T
o Define v = Fyy 1= ?i’ggﬁ o F—1.

e [ hen /\’y = /\7

e Intuition from differential geometry

e Harmonic functions are invariant under pull-back by isometries.

Is this the only non-uniqueness?
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Conjecture
Suppose Ay; = Ay,. Then there exists a diffeomorphism

FIQ—)Q, F|aQ=]d
such that v, = Fiy.

e Only known to be true if €2 C R2 (Nachman, Sylvester, Astala-
L assas-Paivarinta).

e n >3 open.
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Isotropic Conductivities

Now suppose a-priori that ~ is isotropic (a scalar function).

Theorem (Sylvester-Uhlmann)

Let 2 C R™ for n > 3. Suppose «1 and ~» are two smooth scalar
conductivities such that

Ny = Ny,

then ~; = 5.

e Non-constant coefficient V-V is not so nice.

e [ he proof considers an auxiliary problem for the Schrodinger oper-
ator A + V.

27



Schrodinger Operator A + V and its Dirichlet-Neumann map

Let V € L°°(Q2) be the potential.

Assume for all f € C°°(9%2), Flus solving
(A~+V)ur =0 on 2

up = f on 0%2

Define Dirichlet-Neumann map Ay : C®°(02) — C°°(92) by

Ay @ fr— Ovuy

/\V1 = /\V2 — V7 = V57 Yes
(n > 3 Sylvester-Uhlmann, n = 2 Bukgheim)
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e For isotropic conductivity, V -V is a special case of A +V

e Take V = _ﬁ,_yﬁ and make a change of variable.




The Sylvester-Uhlmann Result n > 3

e Prove: Ay, = Ay,

, = Vi =W

e [ WO steps:

29



The Sylvester-Uhlmann Result n > 3

e Prove: /\V1 = /\V2 — Vi = V.

e [ WO steps:

1. Derive integral identity relating Ay to V.
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The Sylvester-Uhlmann Result n > 3

e Prove: /\V1 = /\V2 = Vi = V5.

e [ WO steps:

1. Derive integral identity relating Ay to V.

2. Probe identity with special solutions.
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1. Boundary Integral Identity

Suppose uq,us solves (A 4+ Vj)uj =0
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1. Boundary Integral Identity

Suppose up,up solves (A + V;)u; = 0 then by Green's theorem
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1. Boundary Integral Identity

Suppose ui,us solves (A + Vj)uj = 0 then by Green’s theorem

/Q u1(Vy — Vo)us = /

90 U_Q(/\Vl T /\Vg)ul =0
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1. Boundary Integral Identity

Suppose uq,us solves (A + V})uj = 0 then by Green’s theorem

/QU1 M1 -Va) u_2=/89u_2\(/\\/1:/\v2)}01 =0

info we want nfo given
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1. Boundary Integral Identity

Suppose uq,us solves (A + V})uj = 0 then by Green’s theorem

/QU1 M1 -Va) u_2=/89u_2\(/\\/1:/\v2)}01 =0

info we want nfo given

Are products of solutions dense?

Will show products of solutions "look like" Fourier Transforms.
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1. Boundary Integral Identity

Suppose u,us solves (A + Vj)uj = 0 then by Green’s theorem

Vi—Vo) un = > (Ay, — N =0
/QU1 M —-Vo) w3 39’“2\( Vi~ Vp) U1

info we want info given

Are products of solutions dense?

Will show products of solutions " look like” Fourier Transforms.

Construct " Complex Geometric Optics”
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2. Probing Identity With Special Solutions

e Recall Fourier Transform of a function:

FOE© = [ e fda
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2. Probing Identity With Special Solutions

e Recall Fourier Transform of a function:

FOE© = [ e fda

e Construct solutions of the form

u=e"*(1+r)
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2. Probing Identity With Special Solutions

e Recall Fourier Transform of a function:

FOE© = [ e fda

e Construct solutions of the form

u=eST(L47)

e (c€(C"large, (- ¢ =0, r small as |{| — oo.
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2. Probing Identity With Special Solutions

Recall Fourier Transform of a function:

FOE© = [ e fda

Construct solutions of the form

u=e"T(1L4r)
¢ € C™ large, » small as || — oo.
Choose ¢ such that the product

ULy = el T +r

. for a chosen £ € R"™ and r small.
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2. Probing Identity With Special Solutions

Recall Fourier Transform of a function:

FOE© = [ e fda

Construct solutions of the form

u=e"*(1+r)
¢ € C™ large, r small as || — oo.

Choose ¢ such that the product

ULUs = e
Fourier Transform

. for a chosen £ € R™ and r small.

~+7r
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Plug

into

we have

ulﬂgzeig'x—l—r
Vi — Va)uz = O
/QU1( 1 — Vo)up

TV — Vo) =0
/Qe (V1 —V2)
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Caveats

e [hisidea needs n >3

e Choice of ( € C"™ requires THREE mutually perpendicular vectors in
R™.

e Idea only works on flat space.
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Part II - The Manifold Setting

45



Part II - The Manifold Setting

First talk about geometry
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Part II - The Manifold Setting

First talk about geometry then analysis.

a7



Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi, Vs € C®(M)

satisfy Ay, f = Ay, f, Vf, then Vi = V5.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, f = Ay, f, Vf, then V3 = V5.

Dimensions n > 3

Ferreira-Kenig-Salo-Uhlmann proved the analogous assuming:
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, f = Ay, f, Vf, then V3 = V5.

Dimensions n > 3

Ferreira-Kenig-Salo-Uhlmann proved the analogous assuming:

o« M =M x[0,1], g= (Cl) g,&,)>

e (M’ ¢g') a simple manifold
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vo € C®(M)
satisfy Ay, f = Ay, f, Vf, then V3 = V5.

Dimensions n > 3

Ferreira-Kenig-Salo-Uhlmann proved the analogous assuming:

o M =M x[01], g= (é g,&,)>

e (M’ ¢g') a simple manifold

Ferreira-Kurylev-Lassas-Salo recently relaxed the assumption on M.
51



Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)

satisfy Ay, f = Ay, f, Vf, then V3 = V5.

In n =2 we can do even better.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, f = Ay, f, VS, then V3 = V5.

So far we have been able to make measurements on the entire boundary.

conduct M{/ = )
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)

satisfy Ay, f = Ay, f, VS, then V3 = V5.

What if part of the boundary is inaccessible?

71

.\\ I‘.
A fl\ }il ? ’ ’7\ ’.l’ﬂ
| [/ / ﬁ

conduct M{/ = )
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, f = Ay, f, VS, then V3 = V5.

Can only measure on I C M small open subset.

N
v T ? 77

71

[

conduct M{/ =74
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy /\V1f||— = /\V2f||—, Vf, then V3 = s,

Can only measure on I C M small open subset.

N
v T ? 77

71

[

conduct M{/ =74
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy /\V1f||— = /\V2f||—, Vfe CSO(F), then V7 = V5,

Can only measure on I C M small open subset.

NN
v T ] 77

71

[

conduct M{/ = )
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)

satisfy Ay, flr = Ay, flr, Ve C5°(), then vV = V5.

So far we recovered V from the DN map for the operator

d*d+ V.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)

satisfy Ay, flr = Ay, flr, Ve C5°(), then vV = V5.

What if we make the following change
d*d+ V.

59



Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)

satisfy Ay, flr = Ay, flr, Ve C5°(), then vV = V5.

What if we make the following change
(d+:A)"(d+:A)+V
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)

satisfy Ay, flr = Ay, flr, Ve C5°(), then vV = V5.

A a real valued 1-form.
(d+:A)"(d+:A)+V

61



Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)

satisfy Ay, flr = Ay, flr, Ve C5°(), then vV = V5.

Connection Laplacian on complex line bundle E=C x M

(d+iA)"(d+iA) +V
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi, Vo € C®(M)

satisfy Ay, flr = Ay, flr, Ve C5°(), then vV = V5.

Connection Laplacian on complex line bundle E =C x M

(d4+iA)*(d+i1A) +V
What information does its DN map A4y give about A and V7
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)

satisfy Ay, flr = Ay, flr, Vfe Cg°(IM), then vV = V5.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+iA)*(d+iA)

determines

64



Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)

satisfy Ay, flr = Ay, flr, Vfe Cg°(IM), then vV = V5.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+iA)*(d+iA)

determines both the connection curvature dA
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)

satisfy Ay, flr = Ay, flr, Vfe Cg°(IM), then vV = V5.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+iA)*(d+iA)

determines both the connection curvature dA
analytic quantity
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi, Vo € C®(M)
satisfy Ay, flr = Ay, flr, Vfe C5°(), then V3 = V5.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d 4 iA)*(d 4 iA)

determines both the connection curvature dA and
analytic quantity

/A mod 277
v

for all closed curves 7.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vo € C®(M)

satisfy Ay, flr = Ay, flr, Vfe C5°(), then V3 = V5.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of
(d+:A)*(d+ 1 A)
determines both the connection curvature Qf_l, and

analytic quantity

/A mod 277
~

A\ >4

al gfr'ebraicv quantity

for all closed curves ~.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, flr = Ay, flr, Ve C5°(), then vV = V5.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d 4 iA)*(d+iA)

determines both the connection curvature dA and

/A mod 277
.

for all closed curves .

Further generalization
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi, Vs € C®(M)
satisfy /\V1f||— = /\V2f||—, Vfe OSO(I_), then Vi = V5.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+iA)*(d+iA)
determines both the connection curvature dA and

/A mod 277
~

for all closed curves 7.

Theorem(Albin - Guillarmou - LT, Ann Henri Poincaré 2013)
Let # : E — M be a Hermitian bundle over surface M and V a Hermitian
connection acting on E. Then the DN map of the connection Laplacian

VV4+V

determines V and V up to unitary equivalence. -



Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi, Vs € C®(M)
satisfy /\V1f||— = /\V2f||—, Vfe OSO(I_), then Vi = V5.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+iA)*(d+iA)
determines both the connection curvature dA and

/A mod 277
~

for all closed curves 7.

Theorem(Albin - Guillarmou - LT, Ann Henri Poincaré 2013)
Let # : E — M be a Hermitian bundle over surface M and V a Hermitian
connection acting on E. Then the DN map of the connection Laplacian

VV4+V

determines V and V up to unitary equivalence. -



Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+iA)*(d+iA)
determines both the connection curvature dA and
/A mod 277
~

for all closed curves ~.
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Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+iA)*(d+iA)
determines both the connection curvature dA and

/A mod 277
~

for all closed curves ~.

Why is this interesting?
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Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+iA)*(d+iA)
determines both the connection curvature dA and

/A mod 277
~

for all closed curves ~.

Short answer:

74



Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+iA)*(d+iA)

determines both the connection curvature dA and

/A mod 217
Y

for all closed curves 7.

Short answer:
Analysis/PDE
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Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+iA)*(d+iA)

determines both the connection curvature dA and

/A mod 217
.

for all closed curves 7.

Short answer:
Analysis/PDE Topology/Geometry
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Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+iA)*(d+iA)

determines both the connection curvature dA and

/A mod 217
.

for all closed curves 7.

Short answer:
Analysis/PDE = Topology/Geometry
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The Magnetic Schrodinger Equation

Consider the magnetic Schrodinger equation:

Lju:= (d+:A)*(d 4+ tA)u =0
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The Magnetic Schrodinger Equation

Consider the magnetic Schrodinger equation:

Lu:= (d+iA)*(d+iA)u =0
=A if A=0
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The Magnetic Schrodinger Equation

Consider the magnetic Schrodinger equation:

Lu = (d+iA)*(d+iA)u=0
=A if A=0

e A is a real valued 1-form (magnetic potential).
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The Magnetic Schrodinger Equation

Consider the magnetic Schrodinger equation:

Lu = (d+iA)*(d+iA)u=0
=A if A=0

e A is a real valued 1-form (magnetic potential).

e T he curl dA is the magnetic field.
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The Magnetic Schrodinger Equation

Consider the magnetic Schrodinger equation:

Lu = (d+iA)*(d+iA)u=0
=A if A=0

e For all f e C>®(0OM)
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The Magnetic Schrodinger Equation

Consider the magnetic Schrodinger equation:
Ljgu = \(d—l— 1A)*(d + iAZu =0
=A if A=0
e For all f e C*®(0M) solve Lauy =0, ulgy=f
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The Magnetic Schrodinger Equation

Consider the magnetic Schrodinger equation:
Ljgu = \(d—l— 1A)*(d + iAZu =0
=A if A=0
e For all f e C*®(0M) solve Lauy =0, ulgy=f

o Define Ay : friv(d+iA)uy.
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The Magnetic Schrodinger Equation

Consider the magnetic Schrodinger equation:
Ljgu = \(d—l— 1A)*(d + iAZu =0
=A if A=0
e For all f e C*®(0M) solve Lauy =0, ulgy=f

o Define Ay : friv(d+iA)uy.

° /\A1 = /\A2 implies A1 = A7
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The Magnetic Schrodinger Equation

Consider the magnetic Schrodinger equation:
Ljgu = \(d—l— 1A)*(d + iAZu =0
=A if A=0
e For all f e C*®(0M) solve Lauy =0, ulgy=f

o Define Ay : friv(d+iA)uy.

e Ny, = Ay, implies A1 = A>7 NO
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Gauge Invariance

o Let p € C°°(M) be a real function with ¢ |gp;,= 0.
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Gauge Invariance

o Let p € C°°(M) be a real function with ¢ |gp;,= 0.

e Consider the operator Ly 44 = (d+ iA +idgp)*(d +iA + ide)
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Gauge Invariance

o Let p € C°°(M) be a real function with ¢ |gp;,= 0.
e Consider the operator Ly 44 = (d+ iA +idgp)*(d +iA + ide)

o If LAu = 0 then LA_|_dq5€_i¢u = 0.
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Gauge Invariance

o Let p € C°°(M) be a real function with ¢ |gp;,= 0.
e Consider the operator Ly 44 = (d+ 1A+ idop)*(d + 1A + ido)
o If LAu = 0 then LA_|_dq5€_i¢u = 0.

e SO /\A = /\A—l—dqb'
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Gauge Invariance

o Let p € C°°(M) be a real function with ¢ |gp;,= 0.

e Consider the operator Ly 44 = (d+iA 4+ idop)*(d + 1A + ido)
o If L ,u =0 then LA+d¢e_i¢u = 0.

® SO0 Ay = Nptas-

Natural Conjecture (false in general):
If Aa, = Ay, then A1 — Ap is exact.
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Gauge Invariance

o Let p € C°°(M) be a real function with ¢ |gp;,= 0.

e Consider the operator Ly 44 = (d+iA 4+ idop)*(d + 1A + ido)
o If L ,u =0 then LA+d¢e_i¢u = 0.

® SO0 Ay = Nptas-

Natural Conjecture (false in general):
If Aa, = Ay, then A1 — Ap is exact.

This holds only on simply connected domains.
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Gauge Invariance

o Let p € C°°(M) be a real function with ¢ |gy,= 0.

e Consider the operator L4 g4 = (d + A +id¢)*(d + 1A + ide)
o If L ,u =0 then LA_|_d¢e_i¢u = 0.

® SO0 Ay = Natas-

Natural Conjecture (false in general):
If Ag, = Ay, then A1 — Ap is exact.

This holds only on simply connected domains.

/\A1 = /\A2 :>d(A1 —AQ) =0
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Gauge Invariance

o Let p € C°°(M) be a real function with ¢ |gy,= 0.

e Consider the operator L4 g4 = (d + A +id¢)*(d + 1A + ide)
o If L ,u =0 then LA_|_d¢e_i¢u = 0.

® SO0 Ay = Natas-

Natural Conjecture (false in general):
If Ag, = Ay, then A1 — Ap is exact.

This holds only on simply connected domains.

/\A1 = /\A2 :>d(A1 —AQ) = O@Al —AQ = do

S.C.
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Topological Obstructions

e On a surface M with genus similar analytic techniques will obtain

/\A1 =/\A2 =>d(A1 —AQ) =0
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Topological Obstructions

e On a surface M with genus similar analytic techniques will obtain

Aa, = Na, = d(A; — Ap) =0 discuss later in talk

96



Topological Obstructions

e On a surface M with genus similar analytic techniques will obtain

Aa, = Na, = d(A1 — Ap) =0 discuss later in talk

e However, this does not imply A7y — A, is exact.
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Topological Obstructions

e On a surface M with genus similar analytic techniques will obtain

Aa, = Na, = d(A; — Ap) =0 discuss later in talk
e However, this does not imply A7 — A, is exact. So,

Ap — Az is exact = Ay, = Ay,
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Topological Obstructions

e On a surface M with genus similar analytic techniques will obtain

Ag, = Na, = d(A1 — Ap) =0 discuss later in talk

e However, this does not imply A; — A, is exact. So,
Ay — A is exact = Ny, = Ny,

A1 — Ap is closed <= Ay, = Ay,
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Topological Obstructions

e On a surface M with genus similar analytic techniques will obtain

Ag, = Na, = d(A1 — Ap) =0 discuss later in talk
e However, this does not imply A; — A, is exact. So,
Ay — A is exact = Ny, = Ny,

cohomology of M
A1 — Ap is closed <= Ay, = Ay,
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Topological Obstructions

e On a surface M with genus similar analytic techniques will obtain

Ag, = Na, = d(A1 — Ap) =0 discuss later in talk
e However, this does not imply A; — A, is exact. So,
Ay — A is exact = Ny, = Ny,

our result fills this gap
A1 — Ap is closed <= Ay, = Ay,
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Topological Obstructions

e On a surface M with genus similar analytic techniques will obtain

Ag, = Na, = d(A1 — Ap) =0 discuss later in talk

e However, this does not imply A; — A, is exact. So,

Ay — A is exact = Ny, = Ny,
(A1 — As) € H{(M,0M;7Z) <=)>/\A1 = AN\y
A1 — Ap is closed <= Ay, = Ay,

2
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Topological Obstructions

e On a surface M with genus similar analytic techniques will obtain

Aa, = Na, = d(A1 — Ap) =0 discuss later in talk

e However, this does not imply A7 — A, is exact. So,

A1 — Ap is exact = Ay, = ANy,
(Al —AQ) c Hl(M,ﬁM;Z) <:>/\A1 = /\A2
A1 — Agis closed <= Ay, = Ay,

Corollary
ANy = No IFF dA =0 and [, A € 2xZ for all loops 7.
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Topological Obstructions

e On a surface M with genus similar analytic techniques will obtain

Ag, = Na, = d(A1 — Ap) =0 discuss later in talk

e However, this does not imply A; — A, is exact. So,

Ay — A is exact = Ny, = Ny,
(A1 — As) € H{(M,0M;7Z) <=)>/\A1 = AN\y
A1 — Ap is closed <= Ay, = Ay,

2

Corollary
ANg = No IFF dA =0 and [, A € 2xZ for all loops 7.

What motivated us to this condition?
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Topological Obstructions

e On a surface M with genus similar analytic techniques will obtain
Aa, = Na, = d(A1 — Ap) =0 discuss later in talk

e However, this does not imply A7 — A, is exact. So,

Ay — Agis exact = Ny, = Ay,

(A1 — Ar) € H{(M,0M;Z) <:>/\A1 = /\A2
A1 — Ap is closed <« /\A1 = /\A2

Corollary
ANg = No IFF dA =0 and [, A € 2xZ for all loops 7.

What motivated us to this condition?
The answer is in the geometry of connection.
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Point of View of Parallel Transport
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Point of View of Parallel Transport

Let £ = C x M be the trivial complex line bundle over M.
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Point of View of Parallel Transport

Let £ = C x M be the trivial complex line bundle over M.

o VA= d + 1A is a connection acting on this line bundle.
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Point of View of Parallel Transport

Let £ = C x M be the trivial complex line bundle over M.
o VA= d + 1A is a connection acting on this line bundle.

e Let v be a closed loop and zg € v
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Point of View of Parallel Transport

Let £ = C x M be the trivial complex line bundle over M.
o VA= d + 1A is a connection acting on this line bundle.
e Let v be a closed loop and zg € v
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Point of View of Parallel Transport

Let E = C x M be the trivial complex line bundle over M.
o VA = d + 1A is a connection acting on this line bundle.
e Let v be a closed loop and zg €
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Point of View of Parallel Transport

Let E = C x M be the trivial complex line bundle over M.
o VA = d + 1A is a connection acting on this line bundle.
e Let v be a closed loop and zg €

112



e Parallel transport v along ~ by V4
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e Parallel transport v along ~ by V4

SN )0
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e Parallel transport v along ~ by vA
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e Parallel transport v along ~ by vA
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e Parallel transport v along ~ by V4
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e Parallel transport v along ~ by V4
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e Parallel transport v along ~ by V4
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e to obtain v’ € E;,




e to obtain v’ € E,

e Solving the ODE for parallel transport yields v/ = (ei f’VA)fu
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e to obtain v’ € E,

e Solving the ODE for parallel transport yields v/ = (ei f’VA)fu
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e Solving the ODE for parallel transport yields v/ = (ei 5 A)v
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e Solving the ODE for parallel transport yields v/ = (ei va)fu

e The map v — v is called the holonomy of V4 along ~.
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e Solving the ODE for parallel transport yields v/ = (ei va)fu
e The map v +— ¢ is called the holonomy of V4 along ~.

o |, A€ 2rZ iff v =w.
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e Solving the ODE for parallel transport yields v/ = (ei va)v
e The map v — v is called the holonomy of V4 along ~.
e |, A€ 2nZ iff v = .

e Holonomy of V4 and VO are equal iff
/ A € 217
y

for all closed loops ~
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e Solving the ODE for parallel transport yields v/ = (ei va)v
e The map v — v is called the holonomy of V4 along ~.
e |, A€ 2nZ iff v = .

e Holonomy of V4 is equal to that of VO iff
/ A € 217
y

for all closed loops ~

e Connections are isomorphic.
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e Solving the ODE for parallel transport yields v/ = (ei f’YA)v
e The map v — ¢’ is called the holonomy of vA along ~.
° f,yA € 27 iff v/ = v.

e Holonomy of V4 is equal to that of VO iff
/ A € 277
5

for all closed loops ~
e Connections are isomorphic.

e Geometric intuition of our result.
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Proof of Result
Consider a closed loop v on M:

Want to show that [ A € 27Z.
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Proof of Result

Consider a closed loop v on M:

Since dA = 0 we can choose any representative of the homology class.
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Proof of Result

Consider a closed loop v on M:

So we deform the curve as such so that part of it, ', is on OM
131



Proof of Result
Consider a closed loop v on M:

We have Dirichlet-Neumann boundary information along ', about the

operator Ly = (d + iA)*(d + iA) 132



Proof of Result
Consider a closed loop v on M:

We have Dirichlet-Neumann boundary information along ', about the

operator Ly = (d+iA)*(d+iA) which has unique continuation pro%e?)rty



Proof of Result

Consider a closed loop v on M:

This allows us to propagate information along 1
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Proof of Result

Consider a closed loop v on M:

This allows us to propagate information along I'1 QED.
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Higher Rank Bundles

Theorem(Albin - Guillarmou - LT, Ann Henri Poincaré 2013)
Let 7 : E — M be a Hermitian bundle over surface M and V a Hermitian
connection acting on E. Then the DN map of the connection Laplacian

VV+4+V

determines V and V up to unitary equivalence.
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Cauchy-Riemann Operator and Holomorphic Structure

We start with a connection on complex bundle E:
V
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Cauchy-Riemann Operator and Holomorphic Structure

Which determines a Cauchy-Riemann operator:
V= moV:i=09Y
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Cauchy-Riemann Operator and Holomorphic Structure

Which induces a compatible holomorphic structure on E (Kobayashi):
V — 7T170V — 8V — (Ua, ¢a)
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Cauchy-Riemann Operator and Holomorphic Structure

Since M has boundary E has a holomorphic trivialization F':
V= moV:i=0Y = Ua,da) = (F: E— M xCP)
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Cauchy-Riemann Operator and Holomorphic Structure

Since M has boundary E has a holomorphic trivialization F:
V= moV:i=0Y = Ua,da) = (F: E— M xCP)

Play this game for \v&2 7 = 1,2, we get holomorphic trivializations F3y
and F> respectively.
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Cauchy-Riemann Operator and Holomorphic Structure

Since M has boundary E has a holomorphic trivialization F':
V=m0V =0V = (Ua,pa) = (F 1 E— M x CP)

Play this game for VJ, j = 1,2, we get holomorphic trivializations Fy
and F» respectively.

Having the Dirichlet-Neumann map of V1 and V2 agree means we can
choose holomorphic trivializations F7 and F5 such that they agree on
oM.
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The Analysis Part
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The Analysis Part

e Show that DN map of (d 4+ iA4)*(d + iA) determines dA.
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The Analysis Part

e Show that DN map of (d 4+ iA)*(d + iA) determines dA.
e Uses the same idea as
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The Analysis Part

e Show that DN map of (d 4+ iA)*(d + iA) determines dA.
e Uses the same idea as DN map of A 4+ V determines V
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The Analysis Part

e Show that DN map of (d+iA)*(d 4+ iA) determines dA.
e Uses the same idea as DN map of A 4+ V determines V
e Start with

/L—LQ (/\Vl T /\VQ)U']_

/M uiun(Vy — Vo) = /

oM
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The Analysis Part

e Show that DN map of (d 4+ iA)*(d + iA) determines dA.
e Uses the same idea as DN map of A + V determines V
e Start with

/M uiun(Vy — Vo) = /

oM
for solutions uy and up solving (A + V;)u; = 0.

us(Ay; — Nyy)ug
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The Analysis Part

e Show that DN map of (d +iA)*(d + iA) determines dA.
e Uses the same idea as DN map of A 4+ V determines V
e Start with

/M uiun(Vh — Vo) = /aM up (Ayy :OAVQZU1

for solutions uy and uyp solving (A + V;)u; = 0.
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The Analysis Part

e Show that DN map of (d +iA)*(d + iA) determines dA.
e Uses the same idea as DN map of A 4+ V determines V
e Start with

/M uiun(Vh — Vo) = /aM up (Ayy :OAVQZU1

for solutions uy and uyp solving (A + V;)u; = 0.

e On M how do we show density of products of solutions?
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The Analysis Part

e Show that DN map of (d 4+ iA)*(d + iA) determines dA.
e Uses the same idea as DN map of A + V determines V
e Start with

/M ujup(Vi —Va) = /aM uz (Ayy :OAv22u1
for solutions uy and up solving (A + V;)u; = 0.

e On M how do we show density of products of solutions?
e In R™ use Fourier Transform.
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Bukgheim’'s Result for (M,g) = (D, e)
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Bukgheim’s Result for (M,g) = (D, e)

1. Integral identity

/Du_l(Vl —V2)up = /{])Du_lfAvl :OAVQ)J’UQ

for uq,up solving (Ag + Vj)u; = 0.
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Bukgheim’s Result for (M,g) = (D, e)

1. Integral identity

/Du_l(Vl — Vo)up = /6@“_1\(/\‘/1 :O/\VQ)JUQ

for uq,up solving (Ag + Vj)u; = 0.

2. Construct CGO solutions of (A 4+ V)u = 0 of the form

u(z) = PN+ 7y )
o(h)
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Bukgheim’'s Result for (M,g) = (D, e)

1. Integral identity

ui(Vy — V. =/ a1 (Ay: — Ay u
/Dul( 1 - V2)up = [ ( VlIo V) U2

for w1, us solving (Ag+ V;)u; = 0.

2. Construct CGO solutions of (A 4+ V)u = 0 of the form

u(z) = TP/ 4 \be)
o(h)

e d(2) = ¢(2) +iv(z) = 22 so that Ae®/h = 0.
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Bukgheim’'s Result for (M,g) = (D, e)

1. Integral identity

ui(Vy — V. =/ a1 (Ay: — Ay u
/Dul( 1 - V2)up = [ ( VlIo V) U2

for w1, us solving (Ag+ V;)u; = 0.

2. Construct CGO solutions of (A 4+ V)u = 0 of the form

u(z) = TP/ 4 \be)
o(h)

e d(2) = ¢(2) +iv(z) = 22 so that Ae®/h = 0.
o d is holomorphic and Morse
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Bukgheim’s Result for (M,g) = (D, e)

1. Integral identity

/DU_1(V1 — V2)up = /(B)Du_lfAvl :O/\VQ)J’UQ

for uq,up solving (Ag+ Vj)u; = 0.

2. Construct CGO solutions of (A + V)u = 0 of the form

— EP(2)/h
u(z) = e (1+ )
o(h)
e d(2) = ¢(2) +ip(z) = 22 so that Ae®/h = 0.
e d is holomorphic and Morse
e Unique critical point at origin
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3. Plug uy = e®/"(1 + 1) and us = e~ ®/"(1 4 r;,) into the integral
identity

/Du_l(‘ﬁ — Vo)uz = /aDu—lfAVl :O/\VQ)/’UQ

4. Note that real part of the phase cancel we get

/Dgiw (V4 — V5) +o(h) = 0

principal part

5. ¥(x,y) = xzy has a unique non-degenerate critical point at 0.

/D e/ (V1 — Vo) 4o(h) = 0

A&

h(V1—V2)(0)4o(h)
by stationary phase.

6. V1(0) = V5(0). But there is nothing special about the origin. We
can put critical point anywhere we like.



General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi, Vo € C®(M)

satisfy Ay, f = Ay, f, VS, then V3 = V5.
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, f = Ay, f, Vf, then V3 = V5.

In n =2 we can do even better.
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, f = Ay, f, VS, then V3 = V5.

So far we have been able to make measurements on the entire boundary.

conduct M{/ = )
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)

satisfy Ay, f = Ay, f, VS, then V3 = V5.
What if part of the boundary is inaccessible?

NN
v T ] 77

71

[

conduct M{/ = )
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, f = Ay, f, VS, then V3 = V5.

Can only measure on I C M small open subset.

N
v T ? 77

71

[

conduct M{/ =74
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy /\V1f||— = /\V2f||—, Vf, then V3 = s,

Can only measure on I C M small open subset.

N
v T ? 77

71

[

conduct M{/ =74
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, flr = Ay, flr, Vfe C5°(), then V3 = V5.

Can only measure on I C M small open subset.

N
v T ? 77

71

[

conduct M{/ =74

164



General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, flr = Ay, flr, Vfe C5°(), then vV = V5.

Challenges
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, flr = Ay, flr, Vfe C5°(), then V3 = V5.

Challenges

e NoO explicit expression for holomorphic functions
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi,Vs € C®(M)
satisfy Ay, flr = Ay, flr, Vfe C5°(), then V3 = V5.

Challenges

e NoO explicit expression for holomorphic functions
e Placement of critical points
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose Vi, Vs € C®(M)
satisfy Ay, flr = Ay, flr, Vfe C5°(I), then V3 = V5.

Challenges

e NoO explicit expression for holomorphic functions
e Placement of critical points
e Limited data
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Bukgheim’s Result for (M,g) = (D, e)
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Bukgheim's Result for (M,g) = (D, e), Ay, = Ay, on OM
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Bukgheim's Result for (M,g) = (D, e), Ay, = Ay, on OM

1. Integral identity

/M w1 (V1 — Vo)ug = /gJ)Mu_lﬂAvl :O/\VQ)JUQ

for uyi,us solving (Ag+ V;)u; = 0.

2. Construct CGO solutions of (A 4+ V)u = 0 of the form

u(z) = TP/ 4 :fb)
o(h)
o d(2) = ¢(2) +ip(z) = 22 so that Ae®/h = 0.

e ® is holomorphic and Morse
e Unique critical point at origin
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General Surfaces, Ay, = Ay, on OM

1. Integral identity

/M w1 (V1 — Vo)ug = /gJ)Mu_lﬂAvl :O/\VQ)/’MQ

for uyi,us solving (Ag+ V;)u; = 0.

2. Construct CGO solutions of (A 4+ V)u = 0 of the form

u(z) = TP/ 4 :fb)
o(h)
o d(2) = ¢(2) +ip(z) = 22 so that Ae®/h = 0.

e ® is holomorphic and Morse
e Unique critical point at origin
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General Surfaces, /\V1 = /\V2 onl C OM

1. Integral identity

/M w1 (V1 — Vo)ug = /gJ)Mu_lﬂAvl :O/\VQ)JUQ

for uyi,us solving (Ag+ V;)u; = 0.

2. Construct CGO solutions of (A 4+ V)u = 0 of the form

u(z) = TP/ 4 :fb)
o(h)
o d(2) = ¢(2) +ip(z) = 22 so that Ae®/h = 0.

e ® is holomorphic and Morse
e Unique critical point at origin
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General Surfaces, /\V1 = /\V2 onl C OM

1. Integral identity

/Mu_l(V1 — Vo)up = /(9MU_1SAV1 — ) uz
=0 wm I

for w1, us solving (Ag+ V;)u; = 0.

2. Construct CGO solutions of (A + V)u = 0 of the form

u(z) = EPOM(1 4 7y )
o(h)
e d(2) = ¢(2) +ip(z) = 22 so that Ae®/h = 0.

e & is holomorphic and Morse
e Unique critical point at origin
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General Surfaces, /\V1 = /\V2 onl C OM

1. Integral identity

/Mu_l(V1 — Vo)up = /8Mu—1\(/\v1 — ) uz
=0 wm I

for ui,us solving (Ag+ V;)u; = 0. u; [fe= 0

2. Construct CGO solutions of (A + V)u = 0 of the form

u(z) = eicb(z)/h(l + \7“@_/)
o(h)
e d(2) = ¢(2) +ip(z) = 22 so that Ae®/h = 0.

e & is holomorphic and Morse
e Unique critical point at origin
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General Surfaces, /\V1 = /\V2 onl C OM

1. Integral identity

/M (V1 — Vo)up = /8M Jr, Ay = Ayy) un

=0in I =0 in

for ui,us solving (Ag+ V;)u; = 0. u; [fe= 0

2. Construct CGO solutions of (A + V)u = 0, of the form

— EP(2)/h —
u(z) =e (14 rp ) ufre=0
o(h)
e d(2) = ¢(2) +ip(z) = 22 so that Ae®/h = 0.
e d is holomorphic and Morse
e Unique critical point at origin
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General Surfaces, /\V1 = /\V2 onl C OM

1. Integral identity

/M u1 (V1 — Vo)up = /aM Jr, Ay = Ayy) un

=0in I =0 in

for ui,us solving (Ag+ V;)u; = 0. u; [fe= 0

2. Construct CGO solutions of (A + V)u = 0, of the form

_ P (2)/h _
u(z) =e (14 rp)sulre=0
o(h)
e d(2) = ¢+ iy holomorphic so that Ae®/h = 0.

o d is Morse
e Unique critical point at a given point p € M.
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General Surfaces, ANy, =Ny, on T C oM

1. Integral identity

/M ur(Vi — V2)uo = /aM Iy, Ay = Ayy) uo

~"

=0 m ' =0 i T

for ui,us solving (Ag+ V;)u; = 0. uj [fe= 0

2. Construct CGO solutions of (A + V)u = 0, of the form

w(z) = PN+ 1), u =0
o(h)

®(2) = ¢ 4 ip holomorphic so that Ae®/h = 0.

P is Morse

Unique critical point at a given point p € M.

$ needs to be constructed using abstract machinery
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. Plug uq1 = eq’/h(l + r;) and up, = e—q’/h(l + r;) into the integral
h h
identity

w1 (Vi — Va)up = O
/M a1 (V1 — Vo)uo

. Note that real part of the phase cancel we get

| €%y = Vo) +o(h) =0

princi];ZLl part

. ¥ has a unigue non-degenerate critical point at p.

J,, €M1 = V2) ro(h) = 0

\

h(V1—V2) (p)+o(h)
by stationary phase.

. Vi(p) = Vo(p) at the critical point p of ®. Move the critical point
around and we have it for all points on M.



Construction of Special Solutions

We want to construct (Ag+V)u =0

u = exponential leading term + remainder,

g@ofn‘)jfetry CL’I’LCLlyS’I:S

u |rc:O

We first consider " free solutions” of this form when V = 0.
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Reflected Waves (Imanuvilov-Uhlmann-Yamamoto

Suppose ¢ and a are holomorphic with

D ||—c€ R a ||—c€ R
then
5= /b, B e‘T’/ha

o . .
imcoming wave reflected wave

IS harmonic with

’17, ||—c:O

Once such a free solution is constructed, we can use Carleman estimates
to solve for the remainder to get

u = u + remainder
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Conditions for &

So ®d has to satisfy

o O =0

o P ||_C€R

o & is MORSE

Recall that we can conclude Vi(p) = Vo(p) ONLY IF p is the critical
point of such a &.

So for all p € M we need such a ® such that 0®(p) = 0.

(Holomorphic functions are very rigid!!)
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Geometrical Point of View

We ook for a section of the trivial bundle

E=MxC
e which is purely real on F'c C oM
e and is in the kernel of & operator.

So we are interested in understanding Ker(9) in the space
HE(M) :={u: M — C|ul|gye F}

where F C E |5 is @ (real) rank 1 sub-bundle such that F |pe=1T° x R.
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Maslov Index and Ker(9), Range(0)

Let E = M x C be the trivial bundle and

FCE|3M

be a (real) rank 1 sub-bundle over oM.
The MASLOV INDEX u(F,E) measures the winding number of F.

Let Kerp(9) := Ker(8) N H%(M). Then for pu(F, E) + 2x(M) > 0,
dim(Kerp(0)) = u(F, E)

0 : HII?(M) — holomorphic 1 — forms

IS surjective.
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e In our case, we require that F |fe=T°¢ x R.

e However, on T C OM we have no requirements.

e SO by letting F wind on I, we can make u(F, E) as large as we wish

T herefore we have as many holomorphic functions satisfying our bound-
ary condition as we like.

Using surjectivity, we can control the series expansion of our holomor-
phic function at any given point.
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Consider the Map

Kerp(0) — CT, M
dim~p(F,E)  dim—4

u — du(p)

The kernel of this map is very large.
Proposition

For all p € M there exists a nontrivial holomorphic function ® such that
0d(p) =0 and ® |rc€ R.
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