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Part I - The Classical Problem on Rn

1. Calderón’s Impedance Tomography Problem

2. Anisotropic Medium and Non-uniqueness

3. Sylvester-Uhlmann Solution for Isotropic Medium
• Boundary Integral Identity
• Complex Geometric Optics
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Part II - The Manifold Setting

1. Geometric Aspects of PDE

2. Some Geometric Techniques
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• Material ⌦ with conductivity �(x)

• In general the material is anisotropic (muscle, timber, etc.)

• Conductivity depends on direction

• �(x) an n⇥ n positive definite matrix

• Special isotropic cases (water, breast tissue), �(x) = �(x)| {z }
scalar

In⇥n
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How do we determine �(x) in a non-invasive way?

This question is relevant in:

• Breast tumour detection

• Detecting impurities in steel

• Gas/oil exploration
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Electric Impedance Tomography (EIT):

We apply a voltage on the boundary.
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Electric Impedance Tomography (EIT):

This surface voltage induces an internal voltage.
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Electric Impedance Tomography (EIT):

The voltage then gives a surface electric flux (current)

which we can measure.
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Electric Impedance Tomography (EIT):

The lab technician can only measure what happens on the outside.

and record the resulting data:

Input Voltage f1 f2 f3 etc...
Output Current c1 c2 c3 etc...
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Electric Impedance Tomography (EIT):

• The data depend on the conductivity �.

• From the recorded data we recover the conductivity
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A real life experiment. Data collected with 32 electrodes:

The machine is in Rensselaer Polytechnic Institute, USA.
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Numerical reconstruction from data:

Courtesy of Dr. Siltanen of Finnish Centre of Excellence in Inverse Problems Research
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• The pictures look reasonable but....

• Two di↵erent conductivities could potentially give identical mea-
surements.

• Need to prove that this doesn’t happen.
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Mathematical Formulation

Let ⌦ ⇢ Rn be a bounded domain and �(x) be a positive definite con-
ductivity matrix.
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Mathematical Formulation

Let ⌦ ⇢ Rn be a bounded domain and �(x) be a positive definite con-
ductivity matrix.

• For all boundary voltage f 2 C1(@⌦), the induced internal voltage
uf solves the conductivity equation

r · �ruf = 0, uf |@⌦= f
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Mathematical Formulation

Let ⌦ ⇢ Rn be a bounded domain and �(x) be a positive definite con-
ductivity matrix.

• For all boundary voltage f 2 C1(@⌦), the induced internal voltage
uf solves the conductivity equation

r · �ruf = 0, uf |@⌦= f

• Define the linear operator ⇤� : C1(@⌦) ! C1(@⌦) by

⇤� : f| {z }
boundary voltage

7�! (n̂ · �ruf) |@⌦| {z }
boundary current
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Mathematical Formulation

Let ⌦ ⇢ Rn be a bounded domain and �(x) be a positive definite con-
ductivity matrix.

• For all boundary voltage f 2 C1(@⌦), the induced internal voltage
uf solves the conductivity equation

r · �ruf = 0, uf |@⌦= f

• Define the linear operator ⇤� : C1(@⌦) ! C1(@⌦) by

⇤� : f| {z }
boundary voltage

7�! (n̂ · �ruf) |@⌦| {z }
boundary current

• ⇤� is the Dirichlet-Neumann (voltage-current) map.
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Mathematical Formulation

Let ⌦ ⇢ Rn be a bounded domain and �(x) be a positive definite con-
ductivity matrix.

• For all boundary voltage f 2 C1(@⌦), the induced internal voltage
uf solves the conductivity equation

r · �ruf = 0, uf |@⌦= f

• Define the linear operator ⇤� : C1(@⌦) ! C1(@⌦) by

⇤� : f| {z }
boundary voltage

7�! (n̂ · �ruf) |@⌦| {z }
boundary current

• ⇤� is the Dirichlet-Neumann (voltage-current) map.

• Dependence of ⇤� on � NONLINEAR.
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Calderón’s Problem:

Does the operator ⇤� uniquely determine �?
(ie. ⇤�1 = ⇤�2 =) �1 = �2?)
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Calderón’s Problem:

Does the operator ⇤� uniquely determine �?
(ie. ⇤�1 = ⇤�2 =) �1 = �2?)

For general anisotropic (matrix valued) � the answer is NO.
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Counter-example:

• Let F : ⌦ ! ⌦ be a di↵eomorphism with F |@⌦= Id.

21



Counter-example:

• Let F : ⌦ ! ⌦ be a di↵eomorphism with F |@⌦= Id.

• Define �̃ = F⇤� := DF�DFT

|detDF | � F�1.
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Counter-example:

• Let F : ⌦ ! ⌦ be a di↵eomorphism with F |@⌦= Id.

• Define �̃ = F⇤� := DF�DFT

|detDF | � F�1.

• Then ⇤�̃ = ⇤�
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Counter-example:

• Let F : ⌦ ! ⌦ be a di↵eomorphism with F |@⌦= Id.

• Define �̃ = F⇤� := DF�DFT

|detDF | � F�1.

• Then ⇤�̃ = ⇤�

• Intuition from di↵erential geometry

• Harmonic functions are invariant under pull-back by isometries.
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Counter-example:

• Let F : ⌦ ! ⌦ be a di↵eomorphism with F |@⌦= Id.

• Define �̃ = F⇤� := DF�DFT

|detDF | � F�1..

• Then ⇤�̃ = ⇤�

• Intuition from di↵erential geometry

• Harmonic functions are invariant under pull-back by isometries.

Is this the only non-uniqueness?
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Conjecture

Suppose ⇤�1 = ⇤�2. Then there exists a di↵eomorphism

F : ⌦ ! ⌦, F |@⌦= Id

such that �2 = F⇤�1.

• Only known to be true if ⌦ ⇢ R2 (Nachman, Sylvester, Astala-
Lassas-Päivärinta).

• n � 3 open.
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Isotropic Conductivities

Now suppose a-priori that � is isotropic (a scalar function).

Theorem (Sylvester-Uhlmann)
Let ⌦ ⇢ Rn for n � 3. Suppose �1 and �2 are two smooth scalar
conductivities such that

⇤�1 = ⇤�2,

then �1 = �2.

• Non-constant coe�cient r · �r is not so nice.

• The proof considers an auxiliary problem for the Schrödinger oper-
ator �+ V .
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Schrödinger Operator �+ V and its Dirichlet-Neumann map

• Let V 2 L1(⌦) be the potential.

• Assume for all f 2 C1(@⌦), 9!uf solving

(�+ V )uf = 0 on ⌦

uf = f on @⌦

• Define Dirichlet-Neumann map ⇤V : C1(@⌦) ! C1(@⌦) by

⇤V : f 7�! @⌫uf

• ⇤V1 = ⇤V2 =) V1 = V2? Yes
(n � 3 Sylvester-Uhlmann, n = 2 Bukgheim)
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• For isotropic conductivity, r · �r is a special case of �+ V

• Take V =
��

p
�p

� and make a change of variable.



The Sylvester-Uhlmann Result n � 3

• Prove: ⇤V1 = ⇤V2 =) V1 = V2.

• Two steps:
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The Sylvester-Uhlmann Result n � 3

• Prove: ⇤V1 = ⇤V2 =) V1 = V2.

• Two steps:

1. Derive integral identity relating ⇤V to V .
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The Sylvester-Uhlmann Result n � 3

• Prove: ⇤V1 = ⇤V2 =) V1 = V2.

• Two steps:

1. Derive integral identity relating ⇤V to V .

2. Probe identity with special solutions.
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1. Boundary Integral Identity

Suppose u1, u2 solves (�+ Vj)uj = 0
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1. Boundary Integral Identity

Suppose u1, u2 solves (�+ Vj)uj = 0 then by Green’s theorem
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1. Boundary Integral Identity

Suppose u1, u2 solves (�+ Vj)uj = 0 then by Green’s theorem
Z

⌦
u1(V1 � V2)u2 =

Z

@⌦
u2(⇤V1 � ⇤V2)u1 = 0
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1. Boundary Integral Identity

Suppose u1, u2 solves (�+ Vj)uj = 0 then by Green’s theorem
Z

⌦
u1 (V1 � V2)| {z }

info we want

u2 =
Z

@⌦
u2 (⇤V1 � ⇤V2)| {z }

info given

u1 = 0
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1. Boundary Integral Identity

Suppose u1, u2 solves (�+ Vj)uj = 0 then by Green’s theorem
Z

⌦
u1 (V1 � V2)| {z }

info we want

u2 =
Z

@⌦
u2 (⇤V1 � ⇤V2)| {z }

info given

u1 = 0

Are products of solutions dense?

Will show products of solutions ”look like” Fourier Transforms.
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1. Boundary Integral Identity

Suppose u1, u2 solves (�+ Vj)uj = 0 then by Green’s theorem
Z

⌦
u1 (V1 � V2)| {z }

info we want

u2 =
Z

@⌦
u2 (⇤V1 � ⇤V2)| {z }

info given

u1 = 0

Are products of solutions dense?

Will show products of solutions ”look like” Fourier Transforms.

Construct ”Complex Geometric Optics”
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2. Probing Identity With Special Solutions

• Recall Fourier Transform of a function:

F(f)(⇠) =
Z

Rn
e�i⇠·xfdx
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2. Probing Identity With Special Solutions

• Recall Fourier Transform of a function:

F(f)(⇠) =
Z

Rn
e�i⇠·xfdx

• Construct solutions of the form

u = e⇣·x(1 + r)
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2. Probing Identity With Special Solutions

• Recall Fourier Transform of a function:

F(f)(⇠) =
Z

Rn
e�i⇠·xfdx

• Construct solutions of the form

u = e⇣·x(1 + r)

• ⇣ 2 Cn large, ⇣ · ⇣ = 0, r small as |⇣| ! 1.
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2. Probing Identity With Special Solutions

• Recall Fourier Transform of a function:

F(f)(⇠) =
Z

Rn
e�i⇠·xfdx

• Construct solutions of the form

u = e⇣·x(1 + r)

• ⇣ 2 Cn large, r small as |⇣| ! 1.

• Choose ⇣ such that the product

u1ū2 = ei⇠·x + r

. for a chosen ⇠ 2 Rn and r small.

41



2. Probing Identity With Special Solutions

• Recall Fourier Transform of a function:

F(f)(⇠) =
Z

Rn
e�i⇠·xfdx

• Construct solutions of the form

u = e⇣·x(1 + r)

• ⇣ 2 Cn large, r small as |⇣| ! 1.

• Choose ⇣ such that the product

u1ū2 = ei⇠·x| {z }
Fourier Transform

+r

. for a chosen ⇠ 2 Rn and r small.
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Plug

u1ū2 = ei⇠·x + r

into
Z

⌦
u1(V1 � V2)u2 = 0

we have
Z

⌦
ei⇠·x(V1 � V2) = 0

43



Caveats

• This idea needs n � 3

• Choice of ⇣ 2 Cn requires THREE mutually perpendicular vectors in
Rn.

• Idea only works on flat space.
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Part II - The Manifold Setting
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Part II - The Manifold Setting

First talk about geometry
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Part II - The Manifold Setting

First talk about geometry then analysis.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.

Dimensions n � 3

Ferreira-Kenig-Salo-Uhlmann proved the analogous assuming:
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.

Dimensions n � 3

Ferreira-Kenig-Salo-Uhlmann proved the analogous assuming:

• M = M 0 ⇥ [0,1], g =

 
1 0
0 g0(x0)

!

• (M 0, g0) a simple manifold
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.

Dimensions n � 3

Ferreira-Kenig-Salo-Uhlmann proved the analogous assuming:

• M = M 0 ⇥ [0,1], g =

 
1 0
0 g0(x0)

!

• (M 0, g0) a simple manifold

Ferreira-Kurylev-Lassas-Salo recently relaxed the assumption on M 0.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.

In n = 2 we can do even better.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.

So far we have been able to make measurements on the entire boundary.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.

What if part of the boundary is inaccessible?
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.

Can only measure on � ⇢ @M small open subset.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f , then V1 = V2.

Can only measure on � ⇢ @M small open subset.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Can only measure on � ⇢ @M small open subset.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

So far we recovered V from the DN map for the operator

d⇤d+ V.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

What if we make the following change

d⇤d+ V.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

What if we make the following change

(d+ iA)⇤(d+ iA) + V

60



Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

A a real valued 1-form.

(d+ iA)⇤(d+ iA) + V
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Connection Laplacian on complex line bundle E = C ⇥M

(d+ iA)⇤(d+ iA) + V

62



Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Connection Laplacian on complex line bundle E = C ⇥M

(d+ iA)⇤(d+ iA) + V

What information does its DN map ⇤A,V give about A and V ?
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA|{z}
analytic quantity
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA|{z}
analytic quantity

and

Z

�
A mod 2⇡Z

for all closed curves �.

67



Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA|{z}
analytic quantity

and

Z

�
A mod 2⇡Z

| {z }
algrebraic quantity

for all closed curves �.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA and
Z

�
A mod 2⇡Z

for all closed curves �.

Further generalization
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA and
Z

�
A mod 2⇡Z

for all closed curves �.

Theorem(Albin - Guillarmou - LT, Ann Henri Poincaré 2013)
Let ⇡ : E ! M be a Hermitian bundle over surface M and r a Hermitian
connection acting on E. Then the DN map of the connection Laplacian

r⇤r+ V

determines V and r up to unitary equivalence.
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Dimensions n = 2

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA and
Z

�
A mod 2⇡Z

for all closed curves �.

Theorem(Albin - Guillarmou - LT, Ann Henri Poincaré 2013)
Let ⇡ : E ! M be a Hermitian bundle over surface M and r a Hermitian
connection acting on E. Then the DN map of the connection Laplacian

r⇤r+ V

determines V and r up to unitary equivalence.
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Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA and
Z

�
A mod 2⇡Z

for all closed curves �.
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Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA and
Z

�
A mod 2⇡Z

for all closed curves �.

Why is this interesting?
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Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA and
Z

�
A mod 2⇡Z

for all closed curves �.

Short answer:

74



Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA and
Z

�
A mod 2⇡Z

for all closed curves �.

Short answer:
Analysis/PDE
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Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA and
Z

�
A mod 2⇡Z

for all closed curves �.

Short answer:
Analysis/PDE Topology/Geometry
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Dimensions n = 2

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

(d+ iA)⇤(d+ iA)

determines both the connection curvature dA and
Z

�
A mod 2⇡Z

for all closed curves �.

Short answer:
Analysis/PDE ⌧ Topology/Geometry
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The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

LAu := (d+ iA)⇤(d+ iA)u = 0

78



The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

LAu := (d+ iA)⇤(d+ iA)| {z }
=� if A=0

u = 0
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The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

LAu := (d+ iA)⇤(d+ iA)| {z }
=� if A=0

u = 0

• A is a real valued 1-form (magnetic potential).
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The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

LAu := (d+ iA)⇤(d+ iA)| {z }
=� if A=0

u = 0

• A is a real valued 1-form (magnetic potential).

• The curl dA is the magnetic field.
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The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

LAu := (d+ iA)⇤(d+ iA)| {z }
=� if A=0

u = 0

• For all f 2 C1(@M)
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The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

LAu := (d+ iA)⇤(d+ iA)| {z }
=� if A=0

u = 0

• For all f 2 C1(@M) solve LAuf = 0, u |@M= f
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The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

LAu := (d+ iA)⇤(d+ iA)| {z }
=� if A=0

u = 0

• For all f 2 C1(@M) solve LAuf = 0, u |@M= f

• Define ⇤A : f 7! i⌫(d+ iA)uf .
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The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

LAu := (d+ iA)⇤(d+ iA)| {z }
=� if A=0

u = 0

• For all f 2 C1(@M) solve LAuf = 0, u |@M= f

• Define ⇤A : f 7! i⌫(d+ iA)uf .

• ⇤A1
= ⇤A2

implies A1 = A2?
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The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

LAu := (d+ iA)⇤(d+ iA)| {z }
=� if A=0

u = 0

• For all f 2 C1(@M) solve LAuf = 0, u |@M= f

• Define ⇤A : f 7! i⌫(d+ iA)uf .

• ⇤A1
= ⇤A2

implies A1 = A2? NO
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Gauge Invariance

• Let � 2 C1(M) be a real function with � |@M= 0.
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• If LAu = 0 then LA+d�e
�i�u = 0.
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Gauge Invariance

• Let � 2 C1(M) be a real function with � |@M= 0.

• Consider the operator LA+d� = (d+ iA+ id�)⇤(d+ iA+ id�)

• If LAu = 0 then LA+d�e
�i�u = 0.

• So ⇤A = ⇤A+d�.

Natural Conjecture (false in general):
If ⇤A1

= ⇤A2
then A1 �A2 is exact.

This holds only on simply connected domains.

⇤A1
= ⇤A2

) d(A1 �A2) = 0 )|{z}
s.c.

A1 �A2 = d�
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Topological Obstructions

• On a surface M with genus similar analytic techniques will obtain

⇤A1
= ⇤A2

) d(A1 �A2) = 0
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Topological Obstructions

• On a surface M with genus similar analytic techniques will obtain

⇤A1
= ⇤A2

) d(A1 �A2) = 0 discuss later in talk

• However, this does not imply A1 �A2 is exact. So,

A1 �A2 is exact ) ⇤A1
= ⇤A2

cohomology of M

A1 �A2 is closed ( ⇤A1
= ⇤A2
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Topological Obstructions

• On a surface M with genus similar analytic techniques will obtain

⇤A1
= ⇤A2

) d(A1 �A2) = 0 discuss later in talk

• However, this does not imply A1 �A2 is exact. So,

A1 �A2 is exact ) ⇤A1
= ⇤A2

our result fills this gap
A1 �A2 is closed ( ⇤A1

= ⇤A2
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A1 �A2 is closed ( ⇤A1
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Topological Obstructions

• On a surface M with genus similar analytic techniques will obtain
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= ⇤A2
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A1 �A2 is exact ) ⇤A1
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(A1 �A2) 2 H1(M, @M ;Z) , ⇤A1
= ⇤A2

A1 �A2 is closed ( ⇤A1
= ⇤A2

Corollary
⇤A = ⇤0 IFF dA = 0 and

R
� A 2 2⇡Z for all loops �.
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Topological Obstructions

• On a surface M with genus similar analytic techniques will obtain
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Topological Obstructions

• On a surface M with genus similar analytic techniques will obtain

⇤A1
= ⇤A2

) d(A1 �A2) = 0 discuss later in talk

• However, this does not imply A1 �A2 is exact. So,

A1 �A2 is exact ) ⇤A1
= ⇤A2

(A1 �A2) 2 H1(M, @M ;Z) , ⇤A1
= ⇤A2

A1 �A2 is closed ( ⇤A1
= ⇤A2

Corollary
⇤A = ⇤0 IFF dA = 0 and

R
� A 2 2⇡Z for all loops �.

What motivated us to this condition?
The answer is in the geometry of connection.
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Point of View of Parallel Transport
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Point of View of Parallel Transport

Let E = C⇥M be the trivial complex line bundle over M .
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Point of View of Parallel Transport

Let E = C⇥M be the trivial complex line bundle over M .

• rA := d+ iA is a connection acting on this line bundle.

• Let � be a closed loop and z0 2 �

• Fix v 2 Ez0
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Point of View of Parallel Transport

Let E = C⇥M be the trivial complex line bundle over M .

• rA := d+ iA is a connection acting on this line bundle.

• Let � be a closed loop and z0 2 �

• Fix v 2 Ez0
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• Parallel transport v along � by rA
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• Parallel transport v along � by rA
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• to obtain v0 2 Ez0
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• Solving the ODE for parallel transport yields v0 = (ei
R
� A)v
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R
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• Solving the ODE for parallel transport yields v0 = (ei
R
� A)v

• The map v 7! v0 is called the holonomy of rA along �.

•
R
� A 2 2⇡Z i↵ v0 = v.

• Holonomy of rA and r0 are equal i↵
Z

�
A 2 2⇡Z

for all closed loops �
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• Solving the ODE for parallel transport yields v0 = (ei
R
� A)v

• The map v 7! v0 is called the holonomy of rA along �.

•
R
� A 2 2⇡Z i↵ v0 = v.

• Holonomy of rA is equal to that of r0 i↵
Z

�
A 2 2⇡Z

for all closed loops �

• Connections are isomorphic.
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• Solving the ODE for parallel transport yields v0 = (ei
R
� A)v

• The map v 7! v0 is called the holonomy of rA along �.

•
R
� A 2 2⇡Z i↵ v0 = v.

• Holonomy of rA is equal to that of r0 i↵
Z

�
A 2 2⇡Z

for all closed loops �

• Connections are isomorphic.

• Geometric intuition of our result.
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Proof of Result
Consider a closed loop � on M :

Want to show that
R
� A 2 2⇡Z.
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Proof of Result
Consider a closed loop � on M :

Since dA = 0 we can choose any representative of the homology class.
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Proof of Result
Consider a closed loop � on M :

So we deform the curve as such so that part of it, �2, is on @M
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Proof of Result
Consider a closed loop � on M :

We have Dirichlet-Neumann boundary information along �2 about the
operator LA = (d+ iA)⇤(d+ iA)
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Proof of Result
Consider a closed loop � on M :

We have Dirichlet-Neumann boundary information along �2 about the
operator LA = (d+ iA)⇤(d+ iA) which has unique continuation property
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Proof of Result
Consider a closed loop � on M :

This allows us to propagate information along �1
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Proof of Result
Consider a closed loop � on M :

This allows us to propagate information along �1 QED.
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Higher Rank Bundles

Theorem(Albin - Guillarmou - LT, Ann Henri Poincaré 2013)
Let ⇡ : E ! M be a Hermitian bundle over surface M and r a Hermitian
connection acting on E. Then the DN map of the connection Laplacian

r⇤r+ V

determines V and r up to unitary equivalence.
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Cauchy-Riemann Operator and Holomorphic Structure

We start with a connection on complex bundle E:
r
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Cauchy-Riemann Operator and Holomorphic Structure

Which determines a Cauchy-Riemann operator:
r ! ⇡1,0r := @r
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Cauchy-Riemann Operator and Holomorphic Structure

Which induces a compatible holomorphic structure on E (Kobayashi):
r ! ⇡1,0r := @r ! (U↵,�↵)

139



Cauchy-Riemann Operator and Holomorphic Structure

Since M has boundary E has a holomorphic trivialization F :
r ! ⇡1,0r := @r ! (U↵,�↵) ! (F : E ! M ⇥ Cn)
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Cauchy-Riemann Operator and Holomorphic Structure

Since M has boundary E has a holomorphic trivialization F :
r ! ⇡1,0r := @̄r ! (U↵,�↵) ! (F : E ! M ⇥ Cn)

Play this game for rj, j = 1,2, we get holomorphic trivializations F1

and F2 respectively.
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Cauchy-Riemann Operator and Holomorphic Structure

Since M has boundary E has a holomorphic trivialization F :
r ! ⇡1,0r := @̄r ! (U↵,�↵) ! (F : E ! M ⇥ Cn)

Play this game for rj, j = 1,2, we get holomorphic trivializations F1
and F2 respectively.

Having the Dirichlet-Neumann map of r1 and r2 agree means we can
choose holomorphic trivializations F1 and F2 such that they agree on
@M .
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The Analysis Part
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The Analysis Part
• Show that DN map of (d+ iA)⇤(d+ iA) determines dA.
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The Analysis Part
• Show that DN map of (d+ iA)⇤(d+ iA) determines dA.
• Uses the same idea as DN map of �+ V determines V

• Start with
Z

M
u1ū2(V1 � V2) =

Z

@M
ū2(⇤V1 � ⇤V2)u1

147



The Analysis Part
• Show that DN map of (d+ iA)⇤(d+ iA) determines dA.
• Uses the same idea as DN map of �+ V determines V

• Start with
Z

M
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Z
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for solutions u1 and u2 solving (�+ Vj)uj = 0.
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The Analysis Part
• Show that DN map of (d+ iA)⇤(d+ iA) determines dA.
• Uses the same idea as DN map of �+ V determines V

• Start with
Z

M
u1ū2(V1 � V2) =

Z

@M
ū2 (⇤V1 � ⇤V2)| {z }

=0

u1

for solutions u1 and u2 solving (�+ Vj)uj = 0.

• On M how do we show density of products of solutions?
• In Rn use Fourier Transform.
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Bukgheim’s Result for (M, g) = (D, e)
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Bukgheim’s Result for (M, g) = (D, e)

1. Integral identity
Z

D
u1(V1 � V2)u2 =

Z

@D
u1 (⇤V1 � ⇤V2)| {z }

=0

u2

for u1, u2 solving (�g + Vj)uj = 0.
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2. Construct CGO solutions of (�+ V )u = 0 of the form

u(z) = e±�(z)/h(1 + rh|{z}
o(h)

)
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u(z) = e±�(z)/h(1 + rh|{z}
o(h)

)

• �(z) = �(z) + i (z) = z2 so that �e�/h = 0.
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Bukgheim’s Result for (M, g) = (D, e)

1. Integral identity
Z

D
u1(V1 � V2)u2 =

Z

@D
u1 (⇤V1 � ⇤V2)| {z }

=0

u2

for u1, u2 solving (�g + Vj)uj = 0.

2. Construct CGO solutions of (�+ V )u = 0 of the form

u(z) = e±�(z)/h(1 + rh|{z}
o(h)

)

• �(z) = �(z) + i (z) = z2 so that �e�/h = 0.
• � is holomorphic and Morse
• Unique critical point at origin
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3. Plug u1 = e�/h(1 + rh) and u2 = e��/h(1 + rh) into the integral
identity

Z

D
u1(V1 � V2)u2 =

Z

@D
u1 (⇤V1 � ⇤V2)| {z }

=0

u2

4. Note that real part of the phase cancel we get
Z

D
ei /h(V1 � V2)| {z }
principal part

+o(h) = 0

5.  (x, y) = xy has a unique non-degenerate critical point at 0.
Z

D
ei /h(V1 � V2)

| {z }
h(V1�V2)(0)+o(h)

+o(h) = 0

by stationary phase.

6. V1(0) = V2(0). But there is nothing special about the origin. We
can put critical point anywhere we like.



General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.

In n = 2 we can do even better.
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.

So far we have been able to make measurements on the entire boundary.
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.

What if part of the boundary is inaccessible?

161



General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
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satisfy ⇤V1f = ⇤V2f , 8f , then V1 = V2.

Can only measure on � ⇢ @M small open subset.
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Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
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0 (�), then V1 = V2.
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General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose V1, V2 2 C1(M)
satisfy ⇤V1f |� = ⇤V2f |�, 8f2 C1

0 (�), then V1 = V2.

Challenges

• No explicit expression for holomorphic functions
• Placement of critical points
• Limited data
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Bukgheim’s Result for (M, g) = (D, e)
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Bukgheim’s Result for (M, g) = (D, e), ⇤V1 = ⇤V2 on @M
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Bukgheim’s Result for (M, g) = (D, e), ⇤V1 = ⇤V2 on @M

1. Integral identity
Z

M
u1(V1 � V2)u2 =

Z

@M
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=0

u2

for u1, u2 solving (�g + Vj)uj = 0.

2. Construct CGO solutions of (�+ V )u = 0 of the form

u(z) = e±�(z)/h(1 + rh|{z}
o(h)

)

• �(z) = �(z) + i (z) = z2 so that �e�/h = 0.
• � is holomorphic and Morse
• Unique critical point at origin
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General Surfaces, ⇤V1 = ⇤V2 on @M
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General Surfaces, ⇤V1 = ⇤V2 on � ⇢ @M
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General Surfaces, ⇤V1 = ⇤V2 on � ⇢ @M

1. Integral identity
Z

M
u1(V1 � V2)u2 =

Z

@M
u1 (⇤V1 � ⇤V2)| {z }

=0 in �

u2

for u1, u2 solving (�g + Vj)uj = 0.

2. Construct CGO solutions of (�+ V )u = 0 of the form

u(z) = e±�(z)/h(1 + rh|{z}
o(h)

)

• �(z) = �(z) + i (z) = z2 so that �e�/h = 0.
• � is holomorphic and Morse
• Unique critical point at origin
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General Surfaces, ⇤V1 = ⇤V2 on � ⇢ @M

1. Integral identity
Z

M
u1(V1 � V2)u2 =

Z

@M
u1 (⇤V1 � ⇤V2)| {z }

=0 in �

u2

for u1, u2 solving (�g + Vj)uj = 0. uj |�c= 0

2. Construct CGO solutions of (�+ V )u = 0 of the form

u(z) = e±�(z)/h(1 + rh|{z}
o(h)

)

• �(z) = �(z) + i (z) = z2 so that �e�/h = 0.
• � is holomorphic and Morse
• Unique critical point at origin
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General Surfaces, ⇤V1 = ⇤V2 on � ⇢ @M

1. Integral identity
Z

M
u1(V1 � V2)u2 =

Z

@M
u1|{z}

=0 in �c

(⇤V1 � ⇤V2)| {z }
=0 in �

u2

for u1, u2 solving (�g + Vj)uj = 0. uj |�c= 0

2. Construct CGO solutions of (�+ V )u = 0, of the form

u(z) = e±�(z)/h(1 + rh|{z}
o(h)

), u |�c= 0

• �(z) = �(z) + i (z) = z2 so that �e�/h = 0.
• � is holomorphic and Morse
• Unique critical point at origin
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General Surfaces, ⇤V1 = ⇤V2 on � ⇢ @M

1. Integral identity
Z

M
u1(V1 � V2)u2 =

Z

@M
u1|{z}

=0 in �c

(⇤V1 � ⇤V2)| {z }
=0 in �

u2

for u1, u2 solving (�g + Vj)uj = 0. uj |�c= 0

2. Construct CGO solutions of (�+ V )u = 0, of the form

u(z) = e±�(z)/h(1 + rh|{z}
o(h)

), u |�c= 0

• �(z) = �+ i holomorphic so that �e�/h = 0.
• � is Morse
• Unique critical point at a given point p 2 M .
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General Surfaces, ⇤V1 = ⇤V2 on � ⇢ @M

1. Integral identity
Z

M
u1(V1 � V2)u2 =

Z

@M
u1|{z}

=0 in �c

(⇤V1 � ⇤V2)| {z }
=0 in �

u2

for u1, u2 solving (�g + Vj)uj = 0. uj |�c= 0

2. Construct CGO solutions of (�+ V )u = 0, of the form

u(z) = e±�(z)/h(1 + rh|{z}
o(h)

), u |�c= 0

• �(z) = �+ i holomorphic so that �e�/h = 0.
• � is Morse
• Unique critical point at a given point p 2 M .
• � needs to be constructed using abstract machinery
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3. Plug u1 = e�/h(1 + rh) and u2 = e��/h(1 + rh) into the integral
identity

Z

M
u1(V1 � V2)u2 = 0

4. Note that real part of the phase cancel we get
Z

M
ei /h(V1 � V2)| {z }
principal part

+o(h) = 0

5.  has a unique non-degenerate critical point at p.
Z

M
ei /h(V1 � V2)

| {z }
h(V1�V2)(p)+o(h)

+o(h) = 0

by stationary phase.

6. V1(p) = V2(p) at the critical point p of �. Move the critical point
around and we have it for all points on M .



Construction of Special Solutions

We want to construct (�g + V )u = 0

u = exponential leading term| {z }
geometry

+ remainder| {z }
analysis

u |�c= 0

We first consider ”free solutions” of this form when V = 0.
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Reflected Waves (Imanuvilov-Uhlmann-Yamamoto

Suppose � and a are holomorphic with

� |�c2 R a |�c2 R

then

ũ := e�/ha| {z }
incoming wave

� e�̄/hā| {z }
reflected wave

is harmonic with

ũ |�c= 0

Once such a free solution is constructed, we can use Carleman estimates
to solve for the remainder to get

u = ũ+ remainder

(�g + V )u = 0
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Conditions for �

So � has to satisfy

• @̄� = 0

• � |�c2 R

• � is MORSE

Recall that we can conclude V1(p) = V2(p) ONLY IF p is the critical
point of such a �.

So for all p 2 M we need such a � such that @�(p) = 0.

(Holomorphic functions are very rigid!!)
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Geometrical Point of View

We look for a section of the trivial bundle

E = M ⇥ C

• which is purely real on �c ⇢ @M

• and is in the kernel of @̄ operator.

So we are interested in understanding Ker(@̄) in the space

Hk
F (M) := {u : M ! C | u |@M2 F}

where F ⇢ E |@M is a (real) rank 1 sub-bundle such that F |�c= �c ⇥ R.
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Maslov Index and Ker(@̄), Range(@̄)

Let E = M ⇥ C be the trivial bundle and

F ⇢ E |@M
be a (real) rank 1 sub-bundle over @M .
The MASLOV INDEX µ(F,E) measures the winding number of F .

Let KerF (@̄) := Ker(@̄) \Hk
F (M). Then for µ(F,E) + 2�(M) > 0,

dim(KerF (@̄)) = µ(F,E)

@̄ : Hk
F (M) ! holomorphic 1� forms

is surjective.
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• In our case, we require that F |�c= �c ⇥ R.

• However, on � ⇢ @M we have no requirements.

• So by letting F wind on �, we can make µ(F,E) as large as we wish

Therefore we have as many holomorphic functions satisfying our bound-
ary condition as we like.

Using surjectivity, we can control the series expansion of our holomor-
phic function at any given point.
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Consider the Map

KerF (@̄)| {z }
dim⇠µ(F,E)

! CT ⇤
pM| {z }

dim=4

u 7! du(p)

The kernel of this map is very large.

Proposition
For all p 2 M there exists a nontrivial holomorphic function � such that
@�(p) = 0 and � |�c2 R.
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