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Navier—Stokes (NS) egs. in a curved thin domain

» TI': given 2D closed surface in R3 (e.g. sphere, torus)
> Q. = {z € R? | dist(z,T) < &/2} (¢ > 0: small)
» NS egs. with Navier’s (perfect) slip B.C. in Q.

ou® + (u® - V)u® + Vp® =vAu in Q. x (0,00)
divu® =0 in Q. x (0,00)
(NSe) u®-ne. =0, 2vP.D(u®)n. =0 on 9N x (0,00)
ulg=o = ug in Qg
> v > 0: viscosity coefficient independent of e
> m¢: unit outer normal of 992,
> P. = I3 — n. ®@ ne, 2D(uf) = Vus + (Vus)T
» Aim: study the behavior of u¢ as e — 0 and derive limit egs.
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Previous works on NS egs. in thin domains

Main problems in the study of the NS egs. in 3D thin domains
» Global existence of a strong solution u* for large data
» Convergence of u® as e — 0 in an appropriate sense
» Characterization of the limit of € as a sol. to limit egs.
Previous works
» Raugel-Sell (1993), Temam—Ziane (1996), etc.:
Q. = w X (0,¢), w: 2D domain
» Iftimie—Raugel-Sell (2007), Hoang (2010), Hoang—Sell (2010):
Q. = {(z',z3) | ' € (0,1)2, ego(z’) < z3 < eg1(z’)}
» Temam—Ziane (1997): Q. = {z € R3 |1 < |z| < 1 + €}
Our case
» . around a general surface I" with nonconstant curvatures
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» n: unit outer normal of T
Qe={y+rn(y) |lyel,re(—c/2,¢/2)}

» Average of u: Q. — R3 and its tangential component
1 re/2
Mu(y) =~ [ u(y+rn@)dr, yer

—e/2
Mru(y) = Mu(y) — {Mu(y) - n(y)}n(y)

» Initial data of (IV.S¢) satisfies

uf € H'(Q)?, divui =0 in Q, u§-n.=0 on 90
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Main theorem

Theorem 1 (M., 2020, Adv. Diff. Equ.)
Under suitable assumptions on I" and ug, suppose that
(@) e > 0, Je1,a € (0,1), s.t.

”ug”%ﬂ(ﬂa) < c€—1+a’ Ve € (0,¢e1)
(b) 3tangential vo € L2(T)3 s.t. lim M u§ = vo weakly in L?(T")3
e—
Then e, € (0,e1) s.t. Ve € (0, e2), 3global strong solution

u® € C([0,00); HY(Q2:)3) N L2 ([0,00); H2(2:)3) to (N Se)

loc

and li_r>r(1) Mu® - n = 0 strongly in C([0, 00); L%(T)).
€

ohu® 4+ (uf - V)u® 4+ Vp® = vAu®, divu® =0 in Q.
(NS)su®-n. =0, 2vP.D(u®)n. =0 on 99,

u€|t:0 = uf) in Q.
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Theorem 1 (continued)
Moreover, tangential vector field
v € C([0,00); L2(T")3) N L2 ([0, 00); H}(T')3) s.t.
> VT > 0, ;1_13(1) M,u® = v weakly in L%(0, T; H'(T)3)
» v is a unique weak solution to
Otv + Vv + Vrq = 2vPdivr[Dr(v)] on T X (0, 00)
(INSp) § divrv =0 on T x (0, 00)

U|t=0 =g on T

» Vr, divr: tangential gradient and surface divergence on T'
» V.,v: covariant derivative of v along itself
» Dr(v): surface strain rate tensor
Vrq = PVq, divrv = tr[Vrv] (P =13 —n®n)
V,v = P(v-Vr)v, 2Dr(v) = P{Vrv + (Vrv)T}P
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Outline of our works

It took three papers to derive (IN.Sp):
» Part 1: J. Math. Sci. Univ. Tokyo, 29 (2022), 149-256. (108pp.)
Basic inequalities in Q. with explicit dependence on e
» Part 2: J. Math. Fluid Mech., 23 (2021), 60pp.
Global existence of u* with explicit estimates in terms of ¢

» Part 3: Adv. Diff. Equ., 25 (2020), 457-626. (170pp.)
Weak convergence of M, uf® ase — 0
and characterization of the limit as a sol. to (INSp)
Why so long?
> We need to re-examine everything in view of dependence on e
(e.g. Sobolev and Korn inegs., estimates of Stokes op.).

» Calculations in 2. are more complicated due to curvatures of T,
since we differentiate u®(x) = u®(y + rn(y)) w.rt.y € I.
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Outline of the proof of Theorem 1

Step 0 Global existence and explicit estimates of a strong sol. u*
(done in Part 2 by using results in Part 1)

Step 1 Derivation of a weak form (w.f) of M, u¢

. average in the thin direction
w.f. of u® in Q. 9 s w.f. of M u®onT

Step 2 Energy estimate for M-« with a bound indep. of e

T
2 2
Jax, | M-u® (@)1 72(ry +/0 | Mru® ()32 (ry dt < er

Step 3 Weak convergence of a subsequence & Characterization

Myus £22% o weak sol. to (INSp)

Step 4 Uniqueness of a weak sol. to (N Sp) = M u® =0 v
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Step 1: Main idea for derivation of w.f. of M u¢

» Forn € HY(I')3 withn - n = 0, divrn = 0 on T, we take

7(x) =n(y), z=y+rn(y) €N (yeT)

as a test function for w.f. of u€ and show

1

= D(uf) : D(7j) de =~ / Dr(M,uf) : Dr(n) dH?
Qe r

1 _ 2

/ u® @uf: Vijde = /(M.rus) ® (M,uf) : VrndH

g T

€

» Main idea: for a function ¢ on Q.,

€/2
i/n ple)dr = /r (i/ , Py )y, dr) dH?(y)

_5/

" / Me(y) dH2(y) (J(y,r) ~ 1: Jacobian)
r
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» The use of local coordinates of I" results in terrible calculations,
since we deal with vector fields and their derivatives.

» Instead, we use the following formulas to carry out calculations
in a fixed coordinate system of R3 (although still involved):

> Foru®: Q. - R3andy €T,

VrMu®(y)

1

e/2
= [ il tW @)} P) Yty + () dr
€ J—g/2

> Forn: T — R3andz = y + rn(y) € Q.,
Vij(z) = {Is — W (y)} 'Vrn(y)

> W = —Vrn:shapeop.of I, P=I3 —nQ®n
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Step 1: Why we need a strong sol. u¢

» Resulting weak form (w.f.) of M u¢ is
w.f. of Mru® = w.f. of (NSp) + R. (residual term)
» To estimate R., we need the estimates for the strong sol. u°:
luf ()7 () < ce™'H

1
| @,y ds < et 1 41

Here o € (0, 1) comes from ||u§|| g1(q,) < ce™ 1.

» Using (f), we can show |R.| < ce®/* — 0 (¢ — 0).
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Estimate for the difference of solutions

Theorem 2 (M., 2020, Adv. Diff. Equ.)
Under the same assumptions as in Theorem 1, we have

M‘r € _ 2
e | Mru®(t) — v(t)||z2(r

T
+ [ IVEMut(©) = Tro(®) s r) dt
0

<er {5a/2 + | Mrug — UO”iZ(I‘)}

forall T' > 0, where ¢ > 0 depends only on T'.

Idea of proof
» take the difference of the weak forms of M.-u® and v
» test M,.u® — v and apply Gronwall’s inequality
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Limit egs. are the surface NS egs.

» Our limit egs.:

3t1) + VU’U + qu = ZVPdin [D[‘(’U)] on I’
divrv=0on T

(N So) {

> Vr: tangential gradient, divy: surface divergence
> V,v: covariant derivative, P = Is — n ® n
> Dr(v): surface strain rate tensor

» (INSp) are the surface NS egs.: we can rewrite (INSp) as
Ov + Vq,v = PdiV[‘S[‘, divpp =0 on T
> St : Boussinesg—Scriven surface stress tensor

St = —qP + (A — v)(divprv) P + 2vDr(v)
(A, v: surface dilatational and shear viscosity)
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» We also note that our limit egs.

Oyv + V,,v = PdiVI‘SI‘, divfv =0 on T’

s |
St = —qP + (A — v)(divpv) P + 2vDr(v)

appear as a part of or a special case of

> Interface egs. of two-phase flows
cf. Slattery—Sagis—Oh (2007, book),
Bothe—Pruss (2010), etc.
> NS egs. on an evolving surface
cf. Koba-Liu—Giga (2017),
Jankuhn—Olshanskii—Reusken (2018), etc.
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Limit egs. are intrinsic / NS egs. on a manifold

» Our limit egs.

Otv + Vv + Vg = 2vPdivr[Dr(v)] on T
divfp =0 on T

(N So) {

are described in terms of a fixed coordinate of R3 and matrices.

» However, when v - n = 0 on I', we have
2Pdivr[Dr(v)] = Agv 4+ Vr(divrv) 4+ 2Kv on T’

> Ap: Hodge Laplacian, K: Gaussian curvature

» Hence (INSp) can be written as
Ov + Vv + Vrq = v(Agv + 2Kv), divrv =0 on T,

which are intrinsic (i.e. depending only on 1st fundamental form).
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» In fact, our limit egs.

8yv + Vv + Vpq = v(Agv + 2Kv) on T
divfpv =0 on I’

(N So) {

agree with the NS egs. on a Riemannian manifold introduced by
> Ebin—Marsden (1970), Taylor (1992)
and studied by many researchers:

> Priebe (1994), Nagasawa (1999), Mitrea—Taylor (2001),
Khesin—Misiotek (2012), Chan—Czubak (2013),
Pierfelice (2017), Priss—Simonett—Wilke (2020), etc.

» In a higher dimensional case, the Gaussian curvature K
in (INSp) is replaced by the Ricci curvature.
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Limit egs. derived under different B.C.

» Temam-—Ziane (1997) studied the NS egs. in
Q. ={zeR3|1< |z| <1+e} =% S2: unit sphere
Hodge B.C.: u® -n. =0, curlu® X n. = 0 on 99,
to derive limit egs. on S? of the form
dv + Vv + Vrq = vAgv, divrv = 0 on S?
» In our work, under
SlipB.C.: ©u®-ne =0, 2vP.D(u’)n. =0 on 99
our limit egs. (INSp) on S?% (with K = 1) are of the form

8v + Vv + Vrq = v(Agv + 2v), divpy = 0 on S2
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B.C. on 99, Visc. on S2

M. 2vP.D(uf)n. =0 Apgv + 2v

Temam—Ziane | curlu® X n. =0 Agv

Difference 2v comes from B.C. of (INS.) and the curvatures of 992:

» Under the condition u® - n. = 0 on 9., we have
2P.D(u®)ne — curlu® X n, = 2W_u® on 99,
> W, : shape operator of Q. (representing curvatures)
» When Q. = {|z| = 1,1 + €}, we have W.u® =~ +u° and
2P.D(uf)n. — curlu® X ne = £2u° on 99,

» This 2u® results in the difference 2v in the two limit egs.
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Thank you for your attention!
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