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Nonlinear wave equation

We consider nonlinear wave equations of power type

nonlineality:

(∂2t −∆x)u(t, x) = |u(t, x)|p, (t, x) ∈ Rt ×Rn
x (NLW)

for p > 1 and n ≥ 2.
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The solution with given initial data can be given as a

fixed point of the contraction mapping

X ∋ u(t, x) 7→ cos(tDx)u(0, x) +
sin(tDx)

|Dx|
ut(0, x)

+
∫ t
0

sin((t− s)Dx)
|Dx|

|u(s, ·)|p ∈ X

in an appropriate Banach space X.

But what does the solution look like?
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Self-similar solution

We will try to capture the most characteristic solution

of (NLW) = self-similar solution.

Important observation:

u(t, x) : sol. to (NLW)

=⇒
uλ(t, x) = λ2/(p−1)u(λt, λx) : sol. to (NLW),

where λ ̸= 0.
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A solution u(t, x) to (NLW) is said to be self-similar if

u(t, x) ≡ uλ(t, x)

for any λ ̸= 0.

First we discuss the existence of self-similar solution for

as large range of p as possible.

We introduce some critical indices:
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• pk(n) =
n+1

n− 1
: lower bound for the exist. of weak global sol.

• pstr(n) =
n+1+

√
n2 +10n− 7

2(n− 1)
: lower bound for the exist. of strong global sol.

• pconf(n) =
n+3

n− 1
: conformal critical

We note pk(n) < pstr(n) < pconf(n).
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Remark on pk(n)

• T. Kato (1980): Assume 1 < p ≤ pk(n). Then weak

solution to (NLW) with compactly supported initial data

satisfying ∫
ut(0, x) dx > 0

or ∫
ut(0, x) dx = 0,

∫
u(0, x) dx ̸= 0

does not exist time globally.
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Remark on pstr(n)

• It is the positive root of (n− 1)p2 − (n+1)p− 2 = 0.

• Strauss conjecture (1981): Time global solutions al-
ways exist for (NLW) if p > pstr(n) and the size of the
compactly supported smooth initial data is small. No
such result can hold if 1 < p ≤ pstr(n).

The case n = 2,3 with p ̸= pstr(n) was solved by Glassey
(1981) and John (1979), respectively, and p = pstr(n) by
Schaeffer (1985).
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It is not a conjecture anymore:

∗ 1 < p < pstr(n) blow-up : Sideris (1984).

∗ p > pstr(n) global : Georgiev-Lindblad-Sogge (1997).

∗ p = pstr(n) blow-up :

Yordanov-Zhang (2006), Zhou (2007).
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Remark on pconf(n)

• This index is associated with the conformal symmetry

map:

u(t, x) 7→ uconf(t, x) = (t2−|x|2)−
n−1
2 u

(
t

t2 − |x|2
,

x

t2 − |x|2

)
for |x| < t.

If u solves (NLW) then uconf does when p = pconf(n).
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Existence of self-similar solutions

• Pecher (2000) : n = 3, pstr(3) < p < pconf(3)

• Hidano (2002) : n = 2, pstr(2) < p < pconf(2)

• Kato-Ozawa (2003) : n ≥ 3 odd, pstr(n) < p < pconf(n)

• Kato-Ozawa (2004) : n ≥ 2 , pstr(n) < p < pconf(n)
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Attempts for p /∈ [pstr, pconf ]

• Pecher (2000) : n = 3, p = pconf(3)

• Planchon (2000) : pconf(n) < p ∈ N

• Ribaud-Youssfi (2002) : 2 ≤ n ≤ 5, pconf(n) < p

• Attempts for n ≥ 6 with large p by Ribaud-Youssfi
(2002), De Almeida-Ferreira (2017).

• An attempt for pk(n) < p < pstr(n) by Kusumoto (in
preparation).
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Their basic strategy is to show the uniqueness of sol. to

(NLW) with the initial data

u(0, x) = ϵ|x|−2/(p−1), ∂tu(0, x) = ϵ|x|−2/(p−1)−1

for small ϵ > 0

=⇒ u(0, x) = uλ(0, x), ∂tu(0, x) = ∂tuλ(0, x)

=⇒ u(t, x) ≡ uλ(t, x)
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more precisely, uniqueness in appropriates Banach spaces

X as a fixed point of the contraction mapping

X ∋ u(t, x) 7→ cos(tDx)u(0, x) +
sin(tDx)

|Dx|
ut(0, x)

+
∫ t
0

sin((t− s)Dx)
|Dx|

|u(s, ·)|p ∈ X
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• Pecher

∥u(t, x)∥X = sup
t>0

tµ∥u(t, x)∥Lr(Rn)

∥u(t, x)∥X = sup
|x|̸=t

(|x|+ t)||x| − t|(3−p)/(p−1)u(t, x)

• Kato-Ozawa

∥u(t, x)∥X =
∥∥∥|t2 − |x|2|γu(t, x)∥∥∥

Lp,∞(R1+n
+ )

Our goal is to give a constructive proof!
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Reduction to ODE

The definition of self-similarity

u(t, x) ≡ uλ(t, x) := λ2/(p−1)u(λt, λx)

with λ = 1/t implies

u(t, x) = t−2/(p−1)u(1, x/t).

Hence u(t, x) has to be of the for form

u(t, x) = t−βφ(x/t), β = 2/(p− 1).

Conversely, such u(t, x) is self-similar.
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Plugging it into (NLW), we have

β(β+1)φ(y)+2(β+1)y·∇φ(y)−∆φ(y)+⟨φ′′y, y⟩ = |φ(y)|p

=⇒(
r2 − 1

)
ψrr +

(
2(β+1)r −

n− 1

r

)
ψr + β(β+1)ψ = |ψ|p

with radially symmetric solution φ(y) = ψ(|y|)

=⇒

4s(s− 1)fss+2{(2β+3)s− n}fs+ β(β+1)f = |f |p

with ψ(r) = f(r2)
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=⇒

La,b,cf(s) =
1

4
|f(s)|p (NLHG)

where s(= r2) ≥ 0 and

La,b,c = s(s− 1)
d2

ds2
+ {(a+ b+1)s− c}

d

ds
+ ab

with

a = β/2 = 1/(p− 1),

b = (β+1)/2 = 1/(p− 1) + 1/2,

c = n/2.
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Hypergeometric function

(NLHG) can be regarded as a nonliner perturbation of
hypergeometric differential equation:

La,b,ch = 0 (HG)

Hypergeometric function

ha,b,c(z) =
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)γ(b+ k)

Γ(c+ k)

zk

k!

is a solution to (HG). We remark ha,b,c(0) = 1 and
ha,b,c(s) > 0 for s ≥ 0.
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We find a sol to (NLHG) of the form

f(s) = εh(s)g(s),

where h is a sol to (HG) and ε > 0. Plugging it into
(NLHG), we have

s(s− 1)gss+2
{
(a+ b+1)s− c+ s(s− 1)

hs

h

}
gs

= (εh)p|g|p. (G)

We can construct a bounded function g(s) > 0 on [0,1]
for sufficiently small ε > 0 due to the symmetric prop-
erty:
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Symmetric property of (NLHG)

We set

T : f(s) 7→ f(1− s), S : f(s) 7→ −s−af(1/s)

then we have

La,b,cf = 1
4|f |

p S−→ La,a−c+1,a−b+1f = 1
4|f |

p

T

y yR=S−1TS

La,b,a+b−c+1f = 1
4|f |

p S−→ La,c−b,a−b+1f = 1
4|f |

p.

20



By this symmetry:

• Interval shift : [0,1]
S←→ [1,∞]

=⇒ It suffices to consider (G) on [0,1].

• Singular points shift : s = 0
T←→ s = 1

=⇒ It suffices to consider (G) near s = 0.
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Then we construct a positive power series solution

g(s) =
∞∑
k=0

ak
k!
sk ; ak =

dkg

dtk
(0)

to

s(s− 1)gss+2
{
(a+ b+1)s− c+ s(s− 1)

hs

h

}
gs

= (εh)pgp (G)

for |s| < 1.
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Noting h(0) = 1, we have

(G)|s=0 : −2cg′(0) = εpg(0)p

(G)′|s=0 : −g′′(0) + 2(a+ b+1− h′(0))g′(0)− 2cg′′(0)

= pεpg(0)p−1(h′(0)g(0) + g′(0))

(G)′′|s=0 : · · · = · · ·
... ...

Setting g(0) = 1, each g(k)(0) = O(εp) (k = 1,2, . . .) is

given iteratively!.
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Tentative self-similar solution

Summarising the argument so far, a self-similar solution

is ”tentatively” constructed by

u(t, x) = ε t−2/(p−1)h(|x|2/t2) g(|x|2/t2),

where h is a sol. to (HG) and g a bounded function.

Does the nonlinear term |u(t, x)|p has a meaning as a

distribution?
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• We have the stable self-similar sol. to (NLW):

u(t, x) =cn,p|x|−2/(p−1),

cn,p =

{
2

p− 1

(
n− 2−

2

p− 1

)}1/(p−1)
.

Since

|u(t, x)|p = (cn,p)
p|x|−2p/(p−1) ∈ L1

loc(R
n),

for p < n/(n− 2), then it can be understood as a distri-

bution.
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• Unfortunately, it is not always the case for our con-

struction. Indeed, when p = (n+1)/(n−1), correspond-

ing hypergeometric function is

h(s) = |1− s|−a−1(1− s)

with a = (n− 1)/2, and g(s) is a constant. Then

u(t, x) = cn|t2 − |x|2|−a−1(t2 − |x|2)

we require u ∈ Lploc(R
n+1) or equivalently

p (−a) = −p/(p− 1) > −1⇐⇒
p

p− 1
< 1.
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The case n = 3

The hypergeometric function is given by an elementary
function:

h(s) =



(1+
√
s)
p−3
p−1−(1−

√
s)
p−3
p−1

√
s

for 0 < s < 1

(
√
s+1)

p−3
p−1+(

√
s−1)

p−3
p−1

√
s

for s > 1

is a sol to (HG) with a = 1/(p− 1), b = 1/(p− 1)+1/2,
c = n/2 when p ̸= 3.
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When p = 3, we need a modification:

h(s) =


log(1+

√
s)−log(1−

√
s)√

s
for 0 < s < 1

log(
√
s+1)+log(

√
s−1)√

s
for s > 1

When 1 < p ≤ 3, h(s) is singular only at s = 1, while

h(s) has no singularity when p > 3.
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Then a self-similar solution is constructed by

u(t, x) = ε t−2/(p−1) h(|x|2/t2)︸ ︷︷ ︸
sing:|x|=|t|

g(|x|2/t2)︸ ︷︷ ︸
bdd

.

For the nonlinear term |u(t, x)|p to make sense, we re-

quire u ∈ Lploc(R
n+1) or equivalently

h(|x|2) ∈ Lploc(R
n)⇐⇒ p

p− 3

p− 1
> −1

⇐⇒ p > pstr(3) = 1+
√
2.
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For u(t, ·) ∈ Lp(Rn), we further require

p

(
1−

p− 3

p− 1

)
> 3⇐⇒ p < pconf(3) = 3.

The result by Pecher is recaptured!
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Conclusions

• Hypergeometric functions are behind the nonliner

wave equations. (Remark: Zhou (2007) and Zhou-

Hua (2014) implicitly indicated this fact in different

contexts.)

• By virtue of it, we can construct self-similar solu-

tions.
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Thank you very much for your attendance in
this difficult time!
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