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Nonlinear wave equation

We consider nonlinear wave equations of power type
nonlineality:

(67 — Au(t, z) = |[u(t, )P, (t,z) € Rg x R? (NLW)

for p>1 and n > 2.



The solution with given initial data can be given as a
fixed point of the contraction mapping

sin(tDy)
| De|

tsin((t — s)Dyz)

0 | Dy

in an appropriate Banach space X.

X S u(t,z) — cos(tDz)u(0,x) + ut (0, )

+ lu(s, )P € X

But what does the solution look like?



Self-similar solution

We will try to capture the most characteristic solution
of (NLW) = self-similar solution.

Important observation:

u(t,z) : sol. to (NLW)
—
uy(t,z) = A2/ P~y (¢, Az) @ sol. to (NLW),

where A = 0.



A solution u(t,z) to (NLW) is said to be self-similar if

u(t,z) = up(t, x)
for any A #= 0.

First we discuss the existence of self-similar solution for
as large range of p as possible.

We introduce some critical indices:



n—+1

e prp(n) =
n—1
. lower bound for the exist. of weak global sol.
(n) n—|—1+\/n2—|—10n—7
® Dstr(N) =
2(n—1)
. lower bound for the exist. of strong global sol.
3

® Peonf(n) = il : conformal critical

We note pp(n) < pstr(n) < peons(n).



Remark on p;(n)

e T. Kato (1980): Assume 1 < p < pr(n). Then weak
solution to (NLW) with compactly supported initial data
satisfying

/ut(O,x) dx > 0
or
/ut(O,:v) dx = 0, /u(O,az) dx #= 0

does not exist time globally.



Remark on pg,-(n)
e It is the positive root of (n— 1)p?2 — (n+ 1)p—2 = 0.

e Strauss conjecture (1981): Time global solutions al-
ways exist for (NLW) if p > pstr(n) and the size of the
compactly supported smooth initial data is small. No
such result can hold if 1 < p < pgr(n).

The case n = 2,3 with p # py,(,) Was solved by Glassey
(1981) and John (1979), respectively, and p = Pstr(n) by
Schaeffer (1985).



It is not a conjecture anymore:

x 1 < p < pstr(n) blow-up : Sideris (1984).

* p > psrr(n) global : Georgiev-Lindblad-Sogge (1997).
* p = pstr(n) blow-up :

Yordanov-Zhang (2006), Zhou (2007).



Remark on p.,, ¢(n)

e T his index is associated with the conformal symmetry
map:

2 | 2y—25t t z
u(t,xr) — u t,x) = (t"—|x 2 Uy ,

for |z| < t.

If u solves (NLW) then u,, s does when p = p.., r(n).
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Existence of self-similar solutions

e Pecher (2000) : n =3, pstr(3) < p < Peonf(3)

e Hidano (2002) : n =2, pst(2) < p < Peonf(2)

e Kato-Ozawa (2003) : n > 3 0dd, pstr(n) < p < peonr(n)

e Kato-Ozawa (2004) : n > 2, psr(n) < p < peonf(n)
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Attempts for p € [pstr, Peon ]

e Pecher (2000) : n =3, p = peonf(3)

e Planchon (2000) : peonr(n) <p €N

e Ribaud-Youssfi (2002) : 2 <n <5, peypr(n) <p

o Attempts for n > 6 with large p by Ribaud-Youssfi
(2002), De Almeida-Ferreira (2017).

e An attempt for pr(n) < p < pstr(n) by Kusumoto (in
preparation).
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T heir basic strategy is to show the uniqueness of sol. to
(NLW) with the initial data

w(0,2) = €|lz|~ 2P~ 50(0,z) = e|lz| 2/ (P~ 1)1

for small e > 0

!

w(0,z) = u)(0,z), du(0,z) = Oru) (0, x)

!

u(t,x) = u)(t,x)
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more precisely, uniqueness in appropriates Banach spaces
X as a fixed point of the contraction mapping

sin(tDy)

(D)

tsin((t —s)Dy
+/o Dy

X S u(t,z) — cos(tDz)u(0,x) + ut (0, )

|U’(87 )‘p € X
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e Pecher

u(t, ) = sup t*||u(t, z)|| 7 rmn
JuCt,2)lLx = 5P luCt, ) ey

u(t, z)|| = |s|u75t<|ac| + )| — | B3P/ =Dy (¢, 2)

e Kato-Ozawa

Jutt @)llx = [1#% = lal*ult, @) o gty

Our goal is to give a constructive proof!
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Reduction to ODE

The definition of self-similarity
u(t,z) = uy(t,x) := AQ/(p_l)u()\t, AT)
with A = 1/t implies
u(t,z) =t~ 2/@=Dy(1,2/t).
Hence u(t,z) has to be of the for form
u(t,z) =t Po(z/t), B=2/(p-1).

Conversely, such u(t,z) is self-similar.
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Plugging it into (NLW), we have

B(B+1)e(y)+2(B+1)y-Vo(y)—Ap(y)+ "y, y) = le(y)|P
—

(T2— 1>¢rr‘|‘ (2(54‘ 1)r — >¢r+5(5+ 1)y = |¢|p
with radially symmetric solution ¢(y) = ¥ (|y|)

n—1

/’a

——
4s(s — 1) fss +2{(28+3)s —n}fs + BB+ 1) f = |f|
with ¥(r) = f(r?)
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1
Lap,cf(s) = Zlf(s)lp (NLHG)
where s(=r2) > 0 and

d? d
Lope= s(s — 1)@ +{(a+b+1)s— c}£ + ab

with

a=p/2=1/(p—1),
b=(B+1)/2=1/(p—-1)+1/2,
c=mn/2.
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Hypergeometric function

(NLHG) can be regarded as a nonliner perturbation of
hypergeometric differential equation:

La,b,ch =0 (HG)
Hypergeometric function
(c) i M(a+k)v(b+ k) 2"
M (a)l (b) =0 M(c+ k) k!

is a solution to (HG). We remark h,;.(0) = 1 and
hap(s) >0 for s > 0.

ha,b,c(z) —
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We find a sol to (NLHG) of the form

f(s) = eh(s)g(s),
where h is a sol to (HG) and ¢ > 0. Plugging it into
(NLHG), we have

s(s—1)gss + 2{(a +b4+1)s—c+ s(s — 1)%}93
= (eh)|g|”. (G)
We can construct a bounded function g(s) > 0 on [0, 1]
for sufficiently small € > 0 due to the symmetric prop-
erty:
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Symmetric property of (NLHG)

We set

T:f(s) = f(1—2s), S f(s) = —s7%f(1/s)
then we have

1 S 1
La,b,cf — Z|f|p — La,a—c—l—l,a—b—l—lf — Z|f|p

TJ leSlTS

1 S 1
La,b,a—l—b—c—l—lf — Z|f|p — La,c—b,a—b—l—lf — Z|f|p°
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By this symmetry:
e Interval shift : [0,1] «— [1, 0]

—— It suffices to consider (G) on [0, 1].

e Singular points shift : s =20 <i> s=1

— It suffices to consider (G) near s = 0.
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Then we construct a positive power series solution

o0 k
_ U k. d™g
o) = 3 Gsts w= IO

to

hs
s(s—1)gss + 2{(& +b+4+1)s—c+ s(s — 1);}93
= (eh)Pg” (G)
for |s| < 1.
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Noting A(0) = 1, we have
(G)js=0 : —2¢4'(0) = £Pg(0)*
(@) |s=0 : —¢"(0) +2(a+ b+ 1 — 1'(0))g'(0) — 2¢4”(0)

= pePg(0)P~1(H'(0)g(0) + ¢'(0))
(G)”|8:O . . =

Setting ¢g(0) = 1, each ¢¥)(0) = O(eP) (k= 1,2,...) is
given iteratively!.
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Tentative self-similar solution
Summarising the argument so far, a self-similar solution
is " tentatively” constructed by
u(t,z) = et~ 2/ P Dn(|2]2/£2) g(|z|?/£2),
where h is a sol. to (HG) and g a bounded function.

Does the nonlinear term |u(t,z)/P has a meaning as a
distribution?
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e We have the stable self-similar sol. to (NLW):

fu,(t7 x) :Cn,p|$|_2/(p_l),

Since
u(t, ©) [P = (cnp)Plz|~2P/P=1) ¢ LT (R™),

for p <n/(n—2), then it can be understood as a distri-
bution.
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e Unfortunately, it is not always the case for our con-
struction. Indeed, when p = (n+1)/(n—1), correspond-
ing hypergeometric function is

h(s) =|1—s|7%1(1-5)
with a = (n — 1)/2, and g(s) is a constant. Then
u(t,z) = en|t® — [2?] 7071 (2 — |2|?)

we require u € L (R™t1) or equivalently
p

p(—a)=—-p/(p—1) > -1 = "— < 1.
p—1
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The case n =3

The hypergeometric function is given by an elementary

function:

W
=

3

1 -(1-5)

3
i

(14++/s)

w

1
for 0 <s<1

S

h(s) = ¢
p—3 p
(Vs+1)PT4(/s—-1)P

w

=1
for s > 1

\ Vs
is a sol to (HG) with a=1/(p—
c =mn/2 when p # 3.

1), b=1/(p—1)+1/2,
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When p = 3, we need a modification:

’Iog(l-l-\/g)\}'og(l—\/g) forO<s <1
h(s) = 4
log(ﬁ+1)}l09(¢5—1) for s > 1

When 1 < p < 3, h(s) is singular only at s = 1, while
h(s) has no singularity when p > 3.
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Then a self-similar solution is constructed by

u(t,e) = et~/ P~ p(jz?/t%) g(|22/t%) .
sing: \:1:|—|t| bdd

For the nonlinear term |u(t,z)|P to make sense, we re-
quire uw € L (R"*1) or equivalently

loc

—3
h(|z|?) € LP (R™) —=p—>-1

loc

= p>psr(3) =1+ \/§
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For u(t,-) € LP(R™), we further require

The result by Pecher is recaptured!
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Conclusions

e Hypergeometric functions are behind the nonliner
wave equations. (Remark: Zhou (2007) and Zhou-
Hua (2014) implicitly indicated this fact in different

contexts.)

e By virtue of it, we can construct self-similar solu-
tions.
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Thank you very much for your attendance in
this difficult timel
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