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Introduction

The typical problem we are interested in is motion of a closed hypersurface Γt in Rn:

V = H −m(Ωt),

where

V is the inwardward normal velocity of Γt ,

H denotes the mean curvature of Γt ,

Ωt is the set enclosed by Γt ,

m denotes the Lebesgue measure.

The level set formulation gives rise to

ut − |∇u| div
(

∇u

|∇u|

)
+ |∇u|m({u(·, t) < u(x , t)}) = 0.

One may consider general geometric equations (u is sol. ⇒ g(u) is sol. for g increasing)

ut + F
(
∇u,∇2u, {u(·, t) < u(x , t)}

)
= 0

See well-posedness results in [Chen-Hilhorst-Logak 97] [Cardaliaguet 00] [Slepčev 03].
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Applications of level-set dependent nonlocal equations
Image processing (thinning a shape)

Images: D. Pasquignon (1995), Computation of skeleton by partial differential equations,
IEEE Comput. Soc. Press International Conference on Image Processing

Plasma physics
[Grad 79] [Temam 79] [Mossino-Temam 81] [Laurence-Stredulinsky 85]

−∆u + g(u,m({u < u(x)})) = 0.

[Caffarelli-Tomasetti 21] studies regularity of viscosity solutions to fully nonlinear
equations of the same type.
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Convexity

We are interested in asymptotic behavior, singularity formation, control/game interpretation
and

Convexity preserving

Ω0 is convex ⇒ Ωt is convex for all t ≥ 0 ([Cardaliaguet 00] for geometric flows)

{u(·, 0) < h} is convex ⇒ {u(·, t) < h} is convex for all t ≥ 0

(Quasiconvexity of u is preserved.)

Quasiconvexity
We say f ∈ C(Rn) is quasiconvex if {f < h} is convex for all h ∈ R, or equivalently,

f (λx + (1 − λ)y) ≤ max{f (x), f (y)} for all x , y ∈ Rn and λ ∈ (0, 1).

See results on convexity preserving for various equations in [Korevaar 83] [Kawohl 85]
[Kennington 85] [Giga-Goto-Ishii-Sato 91] [Alvarez-Lasry-Lions 97] [Cuoghi-Salani 06] . . .
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Objectives

Consider general nonlocal (degenerate) parabolic equations{
ut + F (u,∇u,∇2u,K ∩ {u(·, t) < u(x , t)}) = 0 in Rn × (0,∞), 　 (1)
u(·, 0) = u0 in Rn, (2)

where K ⊂ Rn is a compact set and u0 is a given continuous function in Rn.

Our aims

1 Provide quasiconvexity results for nonlocal equations that are possibly non-geometric.

We do not assume that for all c1, c2 ∈ R

F (r1, c1p, c1X + c2p ⊗ p,A) = c1F (r2, p,X ,A) (p 6= 0).

2 Give a direct PDE proof, avoiding the set-theoretic arguments in [Cardaliaguet 00].

3 Deepen our understanding about the local case.

[Ishige-Salani 08] shows that the heat equation may fail to preserve quasiconvexity.
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Power convexity

For a, b > 0, q > 0 and λ ∈ (0, 1), take the q-mean Mq(a, b, λ) = (λaq + (1 − λ)bq)
1
q .

A positive function f ∈ C(Rn) is q-convex if f q is convex, i.e.,

f (λx + (1 − λ)y) ≤ Mq(f (x), f (y), λ) for all x , y ∈ Rn and λ ∈ (0, 1).

If q1 ≤ q2, q1-convexity implies q2-convexity.

Quasiconvexity can be regarded as ∞-convexity.

Example

The radially symmetric solution of{
ut + |∇u|m({u(·, t) < u(x , t)}) = 0 in R2 × (0,∞),

u(x , 0) = |x |+ 1 x ∈ R2

is u(x , t) =
|x |

1 + π|x |t
+ 1, NOT convex in x for t > 0.

u1/q is also a solution (⇒ q-convexity breaking)

Without K , coercivity preserving may fail to hold.
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Assumptions on F : R× (Rn \ {0})× Sn × BK → R
(Sn is the set of all n × n sym. matrices, BK is the collection of all meas. subsets of K .)

(F1) F (r1, p,X1,A) ≤ F (r2, p,X2,A) if r1 ≤ r2 and X1 ≥ X2.

(F2) For each R > 0,

sup{|F (r , p,X ,A)| : r ∈ R, |p| ≤ R with p 6= 0, |X | ≤ R,A ∈ BK} < ∞.

(F3) F is continuous with topology of BK given by d(A1,A2) = m(A14A2). Moreover,
for any R > 0, ∃ a modulus ωR such that

|F (r , p,X ,A1)− F (r , p,X ,A2)| ≤ ωR (m(A14A2)) .

for all p ∈ Rn \ {0} with |p| ≤ R. 　
(F4) F (r , p,X ,A1) ≤ F (r , p,X ,A2) if A1 ⊂ A2. (monotone)

(F5) ∃ a modulus ω such that

F (r , p1,X1,A)− F (r , p2,X2,A) ≤ ω

(
|Z ||p1 − p2|

min{|p1|, |p2|}
+ |p1 − p2|+ α

)
for all α ≥ 0 if X1,X2,Z ∈ Sn satisfy(

X1 0
0 −X2

)
≤

(
Z −Z
−Z Z

)
+ α

(
I 0
0 I

)
(F6) ∃µ ∈ C(R) such that sup

r∈R, A∈BK

|F (r , p,X ,A)− µ(r)| → 0 as (p,X ) → (0, 0).
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Definition of viscosity solutions

Recall
ut + F (u,∇u,∇2u,K ∩ {u(·, t) < u(x , t)}) = 0 in Rn × (0,∞), (1)

Denote by F∗,F∗ the lower and upper semicontinuous envelopes of F .

Subsolution
A function u ∈ USC(Rn × (0,∞)) is called a subsolution of (1) if whenever there exist
(x0, t0) ∈ Rn × (0,∞) and φ ∈ C2(Rn × (0,∞)) s.t. u−φ attains a local maximum at (x0, t0),

φt(x0, t0) + F∗(u(x0, t0),∇φ(x0, t0),∇2φ(x0, t0),K ∩ {u(·, t0) < u(x0, t0)}) ≤ 0.

Supersolution
A function u ∈ LSC(Rn × (0,∞)) is called a supersolution of (1) if whenever there exist
(x0, t0) ∈ Rn × (0,∞) and φ ∈ C2(Rn × (0,∞)) s.t. u − φ attains a local minimum at (x0, t0),

φt(x0, t0) + F∗(u(x0, t0),∇φ(x0, t0),∇2φ(x0, t0),K ∩ {u(·, t0) ≤ u(x0, t0)}) ≥ 0.

A function u ∈ C(Rn × (0,∞)) is called a solution of (1) if it is both a sub- and supersolution.
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Comparison Principle

Theorem 1
Assume that

(F1)–(F6) hold;

u ∈ USC(Rn × [0,∞)) and v ∈ LSC(Rn × [0,∞)) are resp. a subsol. and a supersol. of

ut + F (u,∇u,∇2u,K ∩ {u(·, t) < u(x , t)}) = 0;

for any T > 0, there exists LT > 0 such that

u(x , t) ≤ LT (|x |+ 1), v(x , t) ≥ −LT (|x |+ 1) for all (x , t) ∈ Rn × [0,T ];

there exists a modulus of continuity ω0 such that

u(x , 0)− v(y , 0) ≤ ω0(|x − y |) for all x , y ∈ Rn.

Then, u ≤ v holds in Rn × [0,∞).

Known comparison results: [Slepčev 03][Da Lio-Kim-Slepčev 04] (bdd domain)
[Srour 09] (bdd sub/supersol.) [Giga-Goto-Ishii-Sato 91] (local)

Uniqueness for non-monotone eqn.: [Alvarez-Cardaliaguet-Monneau 05] [Barles-Ley 06]
[Barles-Ley-Mitake 12] [Kim-Kwon 20] . . .
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Concavity assumption on F

We consider positive solutions, i.e., u > 0. Let v = uq with q >> 1. Then v satisfies

vt+qv
q−1
q F

(
v

1
q ,

1
q
v

1−q
q ∇v ,

1 − q

q2 v
1−2q

q ∇v ⊗∇v +
1
q
v

1−q
q ∇2v ,K ∩ {v(·, t) < v(x , t)}

)
= 0.

Letting β = 1 − 1
q
∈ (0, 1), we get a transformed operator Gβ

Gβ(r , p,X ,A)

=
1

1 − β
rβF

(
r1−β , (1 − β)r−βp, (1 − β)r−βX + (β2 − β)r−β−1p ⊗ p,A

)
.

(F7) For any β < 1 close to 1,

(r ,X ) 7→ Gβ(r , p,X ,A) is concave in (0,∞)× Sn

and
r 7→ rβµ(r1−β) is concave in (0,∞),

where µ is given by (F6).
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Main result

Theorem 2
Assume that

(F1)–(F7);

u0 is uniformly continuous in Rn;

u ∈ C(Rn × [0,∞)) be the unique viscosity solution of{
ut + F (u,∇u,∇2u,K ∩ {u(·, t) < u(x , t)}) = 0 in Rn × (0,∞), (1)
u(·, 0) = u0 in Rn; (2)

u satisfies
inf

Rn×(0,∞)
u > 0;

u satisfies
inf

|x|≥R, t≤T
u(x , t) → ∞ as R → ∞ for any T ≥ 0;

u0 is quasiconvex in Rn.

Then, u(·, t) is quasiconvex in Rn for all t ≥ 0.

Such a solution does exist if additionally there is a subsolution ϕ ∈ C(Rn × (0,∞)) that is
positive, coercive in space and satisfies ϕ(·, 0) ≤ u0 in Rn.
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Proof (cf. [Alvarez-Lasry-Lions 97] [Cuoghi-Salani 06] [Ishige-L-Salani 20])

Our goal is to prove the supersolution property of quasiconvex envelope

u⋆(x , t) = min

{
max{u(y , t), u(z, t)} : x = λy + (1 − λ)z

}
.

1) Approximate u⋆ locally uniformly by

uq(x , t) = min

{
(λu(y , t)q + (1 − λ)u(z, t)q)

1
q : x = λy + (1 − λ)z

}
.

2) Use the fact that v = uq is a supersolution and get

vt(y , t) + Gβ(v(y , t),∇v(y , t),∇2v(y , t),K ∩ {u(·, t) ≤ u(y , t)}) ≥ 0,

vt(z, t) + Gβ(v(z, t),∇v(z, t),∇2v(z, t),K ∩ {u(·, t) ≤ u(z, t)}) ≥ 0.

3) For vq = uqq , notice

(y , z, t) 7→ vq(λy + (1 − λ)z, t)− λv(y , t)− (1 − λ)v(z, t)

attains a minimum and deduce at the minimizer (y , z, t) = (yq , zq , tq)

(vq)t(x , t) = λvt(y , t) + (1 − λ)vt(z, t), ∇vq(x , t) = ∇v(y , t) = ∇v(z, t),

∇2vq(x , t) ≥ λ∇2v(y , t) + (1 − λ)∇2v(z, t), vq(x , t) = λv(y , t) + (1 − λ)v(z, t).
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More about our proof

4) Verify that

m
(
K ∩ {u(·, t) ≤ u(y , t)} \ {u⋆(·, t) ≤ u⋆(x , t)}

)
→ 0 as q → ∞.

Adopt (F3)
F (r , p,X ,A1)− F (r , p,X ,A2) ≤ ωR (m(A14A2))

to get

vt(y , t) + Gβ(v(y , t),∇v(y , t),∇2v(y , t),K ∩ {u⋆(·, t) ≤ u⋆(x , t)}) ≥ error,

vt(z, t) + Gβ(v(z, t),∇v(z, t),∇2v(z, t),K ∩ {u⋆(·, t) ≤ u⋆(x , t)}) ≥ error.

5) Combine the inequalities and use (F7) to obtain

(vq)t(x , t) + Gβ(vq(x , t),∇vq(x , t),∇2vq(x , t),K ∩ {u⋆(·, t) ≤ u⋆(x , t)}) ≥ error.

6) Rewrite the equation

(uq)t(x , t) + F (uq(x , t),∇uq(x , t),∇2uq(x , t),K ∩ {u⋆(·, t) ≤ u⋆(x , t)}) ≥ error.

and adopt the stability arguments to conclude

(u⋆)t(x , t) + F∗(u⋆(x , t),∇u⋆(x , t),∇2u⋆(x , t),K ∩ {u⋆(·, t) ≤ u⋆(x , t)}) ≥ 0.

7) By the comparison principle, u⋆ ≥ u. On the other hand, by definition u⋆ ≤ u.
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Examples

Example 1. Level-set nonlocal curvature flow equations
Let a ∈ R, b ≥ 0, c ≥ 0. Consider in Rn × (0,∞)

ut + a|∇u|+ b|∇u|m(K ∩ {u(·, t) < u(x , t)})− c|∇u| tr
(
∇2γ (∇u)∇2u

)
= 0,

where the energy density γ ∈ C(Rn) ∩ C2(Rn \ {0}) satisfies

γ > 0 in Rn \ {0}, γ(0) = 0,

γ(αx) = αγ(x) for x ∈ Rn and α > 0.

Then
Gβ(r , p,X ,A) = F (p,X ,A) = a|p|+ b|p|m(A)− |p| tr

(
∇2γ(p)X

)
satisfies (F7).

Our proof is PDE-based, in contrast to the set-theoretic arguments in [Cardaliaguet 00].
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Examples

Example 2. Nonlocal evolution equations with u-dependence
Consider in Rn × (0,∞)

ut + V (u) + |∇u|m(K ∩ {u(·, t) < u(x , t)})− |∇u| div
(

∇u

|∇u|

)
= 0,

in Rn × (0,∞), where V ∈ C2(R) is a given bounded function satisfying

V (0) ≥ 0, V ′ ≥ 0 and V ′′ ≤ 0 in (0,∞).

Then

Gβ(r , p,X ,A) =
1

1 − β
rβV (r1−β) + |p|m(A)− tr

((
I −

p ⊗ p

|p|2

)
X

)
satisfies (F7).

See [Tsai-Giga 03] for applications of the local counterpart in crystal growth.
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The Laplacian

The heat equation
Consider in Rn × (0,∞)

ut −∆u = 0.
It is known [Ishige-Salani 08] that in general the quasiconvexity of u in space is not preserved.

Note that F (p,X ) = − trX and

Gβ(r , p,X ) = − trX +
β

r
|p|2.

In this case, Gβ fails to satisfy the concavity assumption (F7).

Decompose ∆u into

∆u = tr

[(
I −

∇u

|∇u|
⊗

∇u

|∇u|

)
∇2u

]
+ tr

[(
∇u

|∇u|
⊗

∇u

|∇u|

)
∇2u

]
= ∆N

1 u +∆N
∞u.
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Summary

Conclusion

We provide a sufficient condition to guarantee the quasiconvexity preserving property.

Our PDE-based approach applies to a general class of nonlocal evolution equations.

The infinity-Laplacian part may cause quasiconvexity breaking.

Further problems

How can we get a sufficient and necessary condition for quasiconvexity preserving?

How about general non-monotone evolution equations?

It seems that quasiconvexity is still preserved by

ut−|∇u|m({u(·, t) < u(x , t)}) = 0.

Thank you for your kind attention!
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