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Relativistic ideal fluids in Minkowski background

» Let (R!*3, m) be the standard Minkowski spacetime with

. < -1 0 )
o 0 I3><3 '

» We denote by m,g and m®? the components for m and m™1
respectively.

» All the indices are raised and lowered with respect to m and
m1L.

» The Greek letters are all from 0 to 3.

» The d'Alembertian O for this metric is given by

3
0=0%%=—-0{+> 0.

i=1



Relativistic fluids in Minkowski background

» The motion of the fluid is described by the fluid velocity and
several thermodynamical quantities:

» The fluid velocity is denoted by

and satisfies



Relativistic fluids in Minkowski background
» There are five thermodynamic quantities:
n: number density of particles
p: pressure
) energy density
S entropy per particle
0 : temperature
» They satisfy the following relation
0 10
» The ratio of the sound speed and the speed of light (denoted
by 1) is given by

ni= ((;p>’ 0<n<1.
PJs

» Here by choosing appropriate units, we assume the speed of
light is 1.



Relativistic fluids in Minkowski background

> We also need the energy-momentum tensor TH" and the
particle current I* which are given by

T = (p+ p)utu” + pm"*, IF = nut.
» The equation of motion is given by
vV, T" =0, V,I"=0. (1)

» Here V is the canonical Levi-Civita connection of the
Minkowski metric m.



Barotropic fluids

In this work we consider barotropic fluids, namely, the pressure p is
a function of the energy density p only:

p=f(p), f >0.

Define

P dp F
Fp::/ —— V:i=¢€"u,
Q o p(P)+p

and

IVI=ef, IVI? = —ViV,.



Equation of motion-Alternative

The equation of motion (1) becomes
y 1
VIV VI SV (VIF) =0, Vu(G(IVIV) =0, (2)

where the function G is defined by

p+p
GUVID = Ty

Note that p and p are functions of ||V]].



The hard phase model-Assumptions

» \We assume the fluid is irrotational:
VuV, =V, V, =0, = V=Vl
for a scalar function ¢.
> p and p are given by

1

1
p=5(IVIP=1), p=5(IVI?+1),

= n=1, G=1.

N |

» We denote 02 := ||V|%. 02 is the enthalpy.



The hard phase model with free boundary

We are interested in the following free boundary problem for hard
phase model:

> Let Q be a spacetime domain in (R'*3 m). Q will be part of
the unknown of our problem.

» The free boundary problem is
V,VE=0, dV=0, in Q
o?=-VIV,=1 on 0Q (3)
V' tangential to 0.

» The initial data satisfies
VHU2V“02 >0 on 02N

o3>1 in Q.



Main result |: Well-posedness

Theorem (M-Shahshahani-Wu)

Any sufficiently regular data satisfying (4) and certain compatibility
conditions leads to a unique local-in-time solution to (3).

» The conditions (4) on initial data is the relativistic Taylor sign
condition.

> Since we are solving an initial-boundary value problem for a
hyperbolic PDE system, the initial data should satisfy certain
compatibility conditions

» Seeking the optimal regularity is not our concern in this work.



Remarks on the model

» The hard phase model has independent physical interest: It is
an idealized model for the physical situation when the
mass-energy density exceeds the nuclear saturation density
during the gravitational collapse of the degenerate core of a
massive star. In this situation, the sound speed is thought to
approach the speed of light (Christodoulou,
Friedman-Pandharipande, Lichnerowicz, Rezzolla-Zanotti,
Walecka, and Zel'dovich, etc.)

» The hard phase model captures main mathematical features
of a class of free boundary problems. Our approach in this
work can be applied to general barotropic fluids with non-zero
vorticity.



Historical results on related models

» Gaseous models: Makino, Rendall (Existence for a class of
solutions), Hadzi¢-Shkoller-Speck, Jang-LeFloch-Masmoudi
(A priori estimates), Disconzi-Ifrim-Tataru (Well-posedness,
without Lagrangian approach)

» Liquid models: Trakhinin (Compressible liquids, Existence using
Nash-Moser, loss of regularity), Oliynyk (Existence for a
similar liquid model using different methods), Ginsberg (A
priori estimates for the same model with smallness assumption
on initial data).



Comparison with Newtonian problem

» The Newtonian free boundary problem for incompressible
irrotational fluid is

V-V=0, VxV=0 in
~t+(\7V)\7:—Vﬁ) m ﬁt (5)
P=0 on 0,
(1, V) tangential to  Ugso (t, 982).
» Hopf Lemma implies the Taylor sign condition
P .
— 87 Z Ct > 0 on 8Qt (6)

on

» Here P is the pressure. V is the fluid velocity. Q; is the
unknown domain occupied by fluid at time t. /i is the outward
unit normal to 9.



|deas to solve the Newtonian problem: Wu (97',99")

» Reducing the problem to the boundary.

» Differentiating the momentum equation in (5) with respect to
D; := 0¢ + V - V to obtain the system:

(5? + 5V,~,> V=— VDtﬁ on 9,

i . (7)
AV =0 in Qt.
» Here Vj is the standard Dirichlet-Neumann operator, and
3 oP
a.= ~ R

» Using singular integrals on the boundary we express 3 and
VD:p in terms of the boundary values of V and its
derivatives.

» It turns out that the first equation in (7) is a quasilinear
equation of V.



|deas to solve the Newtonian problem:
Christodoulou-Lindblad (00")

» Instead of using boundary integrals, one considers the elliptic
problems:

AP =—0;V)9V' in Q. P=0 on 00

. - . - ~ - 8
ADtP = G(8V762P) in Qta DtP = 0 on 8Qt ( )

> Here G(OV,d%P) consists of the product between oV and
9?P, as well as a cubic expression of V.

> The elliptic equations (8) recover the regularity of P and D;P.



Back to hard phase model

» Let Dy := V*#0,, and n be the outward unit normal to 0f2.
| 2

62=1 on 90 = Vo’=—an on 00

a=14/V,0%Vio? > 0.

» Differentiating the equation Dy V# + %V“U2 =0 by Dy on
09, the original system (3) becomes

(D%, + ;avn> VH = — %V’UD\/UQ on 09 ©
OvV* =0 in €.



Quasilinear system

» The operator V,, in (9) is the hyperbolic Dirichlet-Neumann
map. It is not clear at all whether this operator is positive or
not.

» o2 and Dyo? satisfy the following wave equations with
Dirichlet boundary data:

002 = —2(VAVY)(V, V), 0>=1 on 0Q. (10)

ODyo? =4(VFVY)(V,V,0?)
+4(VAVY)(VAVHE)(V,V,) in Q (11)
Dyo? =0 on 9.



Well-posedness: Main ingredients of the proof

» Positivity of the hyperbolic Dirichlet-Neumann operator.

» Higher order regularity: Commuting D\k/. Note that Dy is
defined globally both in the interior of €2 and 0%, and
tangential to 0. Using the equation we show that D2, ~ d,.

» Galerkin method to construct approximation sequences and
prove the convergence of the sequences.



Positivity of the hyperbolic DN map

> Main idea: Multiplying both the boundary equation
(D + %aV,) V = ... and the equation OV =0 by Dy V,
and integrate on Q and 0€2. We obtain the following positive
energy

1
/Q 8t7XV|2dx+/£m 5\DVVFC/S. (12)

Here Q; and 99Q; are the x° = t-slices of Q and 90
respectively.

» Let us illustrate the idea with a simpler model, where B is the
unit ball:
Ou=F in [0,T]xB

13
(02+0,)u=f on [0,T]x0B (13)



Positivity of the hyperbolic DN map

» Multiplying the system (13) by O:u, we have

%at(atuy + (eu)(Oru) = (Deu)f on OB

1
Eat ((3tu)2 + |VU]2) -V - (0tuVu) = —F -0y in B.

(14)
» Integrating the second equation in (14) on [0, T] x B:
1 2 1 2
— | |0exu(T)|“dx — = [ [0¢xu(0)|° dx
2/ 2/ 7
(13)

T T
—/ / (0¢u)(0ru) dS dt = —/ / F - Orudx dt
o JoB o /B



Positivity of the hyperbolic DN map

» Integrating the first equation in (14) on [0, T] x 9B:

5 | oa(DPds =3 [ o) ds
T T (16)
+/ (atu)(&u)det:/ / (Deu)f dS dt
0 oB 0 oB

» Adding (15) and (16), we obtain
1 2 1 2
— [ |0exu(T)|"dx + = |0ru(T)|*dS
2 /B 2 JoB

1 1
:/ at,xu(0)|2dx+/ 0:u(0) dS (17)
2 /B 2 JoB

T T
—/ /F-(?tudxdt—i—/ / (Oru)f dS dt.
o JB o Jos



H*(Q;)-bounds

» To obtain the L®-control in the a priori estimates, we need
the control of 05V in L2(Q;).

> The energy controls DV € H(Q;) and D\’}HV € L2(0%;).
» Using the boundary equation (DZV + %avn) V = ... we have

VoV ~ DYV +lot.
The Trace Theorem implies

VoVl 000 < 1DV V[ 1qy S “Energy for DY V" (18)



H*(Q;)-bounds -conti

» On the other hand, we have
0=0V =0:xDyV + AV,

where A is an elliptic operator on Q;. This together with (18)
gives control on || V|[12(q,) in terms of the energy (i.e., the
H(§2¢)-norm) for D%, V.

» This finally shows D\z/ ~ Vy.



Newtonian limit-Rescaled quantities

» To study the Newtonian limit as the speed of light approaches
infinity, we of course cannot set the speed of light c =1
anymore.

» Now the pressure p and energy density p are given by

p==(c>=c*), p= %(U +c*).

l\)\b—\

» On the boundary 9Q we have 02 = ¢*.

» The initial data satisfies
US >c* in Qo
o2 =c* on 00 (19)
V08V 0d > cjc* >0 on  9Q.



Rescaled quantities and time variable

» Instead of V, 02, we work with the rescaled quantities
Vi=clv, 7:=c?°-¢? (20)

» Here V,7 are to be shown of order O(1) as ¢ — oo.

» In addition to the standard time variable t in the proof of the
well-posedness, we also work with the rescaled time variable
t' := c't. Therefore we have
) ) &
-1 20 1.\2 2
— =c "— m=—c(dt')" + dx
ot ot (dt) Zl( )
1=

3
1
u:—?%+§ﬁ%
i=1

—0
» Note that V" ~casc—



Rescaled energy

>

>

We strive for an a priori estimate which is independent of c.
Therefore the energy must be of order O(1) as ¢ — oc.

Systematically, let E[V](t) and E[Dy;5%](t) be the energies
we bound in the above a priori estimate. A direct observation
shows that

E[V](t) ~¢c, E[Dyd|(t)~c, as c— .

The reason for this is that VO ~ ¢, which appears in the
definition of E[V] and E[Dyo2].

To get an order O(1) energy, we need to consider the rescaled
energies

cLE[VI(t), ¢ LE[Dy?(t).



Sources in the energy estimates

» Systematically, the energy estimates have the following form
c LE[V|(T) + ¢ *E[DyT*](T)

-
< “Initial data of order O(1)" + ¢ 1 / “Nonlinear sources” dt
0

» The “Nonlinear sources” above is of order O(1) as ¢ — oc.

» This observation implies that in the time variable t, we can
extend the solution given by the well-posedness theorem up to
the scale t ~ ¢, and in the time variable t’ up to the scale
t'~ 1.

» This is crucial because eventually t’ is the time variable for
the Newtonian problem.



The discrepancy for energy hierarchy given by the a priori

estimates
» Suppose as ¢ — 00, © is a quantity of order O(1). Then 0;:©

must be of order O(c~!) and 9;© = O(1). However, the a
priori estimate gives the same estimate for 9;© = O(1). In
the Newtonian limit, we need the improved estimate
0:9 = O(c™1).

» To overcome this discrepancy, we look at 72:

7=V —c)?- f:(v"f +2c(VP—¢) (21
i=1

L —0 —i _ :
The a priori estimate shows that V'~ — ¢, V', 52 remains
bounded as ¢ — oo, which in turn shows

VP oc=0(c?) as c— o
» Differentiating (21) in 0, we get

V' =0(c7Y) as ¢ — .



Main result II-Newtonian limit

Finally we have the result on Newtonian limit, which can be
roughly stated as following:

Theorem (M-Shahshahani-Wu)

The rescaled solution (V,@) to the free boundary problem (3)-(4)
converges to the solution to the free boundary problem (5) as
c — 00.



Thank you!



