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Introduction

Random polynomials

e For a multi-index o = (v, ... ) € Z" and z = (z1,...,2,) € C”, we let
laf i=|oa| 4+ ...+ |an| and 2% =z - 207 For a = (o, ... o) € NG,
al = ay!- - a,l, where Ng := NU {0}.

e If P: C" — C is a polynomial given by

P(z) = Z cz% zeC",

a€eNg
then its degree deg(P) := max{|al; ¢, # 0}.
e For n € N and m € Ny we denote by 7,,(T") the space of all trigonometric

polynomials

P(z) = Z cz% zeT"
agZn

on the n-dimensional torus T" with deg(P) := max{|«/|; c, # 0} < m.
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Introduction

The origin of trigonometric random polynomials goes back to the Salem and
Zygmund seminal Acta Math. (1954) paper, where they studied trigonometric
random polynomials of the type

o0

ancn cos(nt + ¢p), t€[—m,m).

n=1
This was continued by Kahane (1960), where the study was extended to random
polynomials in several variables. In the recent decades the multidimensional
variants of the Kahane-Salem-Zygmund inequalities ( KSZ-inequalities for short)
have been of central importance in modern analysis, as, e.g., Fourier analysis,
analytic number theory, or holomorphy in high dimensions. The multidimensional
KSZ-inequality states:

Theorem There exists a positive constant C such that, for each m, n € N with
m > 2 and any trigonometric polynomial }_ ;. c,z® in Tp(T") there exists
a choice of signs ¢, = £1 for which

E €aCaZ”

lof<m

sup
zeTn

< C\/nlogm( Z ca|2>2.

lof<m
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Introduction

Extended variant of Kahane-Salem-Zygmund inequality

Theorem For every a > 0, each m, n > 2 and all families of (c.)aczn |a|<m Of
independent Bernoulli variables on a probability measure space (£2,.4,P) and all
non-zero (Ca)aczr jaj<m C C, we have

Zs( )Caz® nlogm<Z|ca|> } C(a),

la|<m |a|<m

P{w € Q; sup
zeTn

where C(a) := 4(72/(m% - 1))".

loifég ) 4 1) "2 one has C(a) < 1, so for this a we get

Y ca(w)eaz" aW( 3 |ca2>;} >0

lal<m || <m

Remark. For all a > 4(

P{w € Q; sup

zeTn

M. Mastyto (UAM) IAbstract random polynomial inequalities in Banach s| 6 /38



Introduction

In what follows, we shall denote by /7 the linear space C" equipped with the
p-norm (1 < p < o0).

Theorem (H. P. Boas (2000)) Let 1 < p < 0o and m, n > 2. Then there exists
a choice of signs (co)|a|=m: o = *1 such that

¢ If 1< p <2, then

sup ‘ Z 5a

ze B[(p,—,)

< Cy/mnlog m (m!)=1/P,

o If 2 < p < oo, then

sup ‘ Z sa

ze ng loe|=

< Cy/mnlog m n(/2=1/Pm (;m1)1/2,

where C > 0 does not depend on m nor on n.
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Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities

Abstract random Kahane-Salem-Zygmund
inequalities

o We let (2, .4, 1) to be a measure space and let X be a Banach space.

L°(p, X) denotes the space of all equivalence classes of strongly measurable
X-valued functions on Q. We let L%(11) := L%, K), where K := C or
K:=R.

e E C %) is said to be a Banach function lattice(or space), if there exists
h € E with h > 0 a.e. and E is an Banach ideal in L%(u), that is, if |f| < |g]
a.e. with g € E and f € L%(u), then f € E and ||f||e < ||g||e. By a Banach
sequence space we mean a Banach lattice £ C w(N) := L%(N, 2", /1), where
1 is the counting measure.

e If E C L%°u) is a Banach function lattice and X is a Banach space, then the
Kothe-Bochner space E(X) consists of of all f € L%y, X) with ||f(-)||x € E,
and is equipped with the norm || £(x) == [|[|[£(-)[[x] e
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Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities

e (A. Defant—-M. M.) Given a Banach function space X over a probability
measure space (€, .4, P) and a sequence of random variables (V;);en C X,
we are looking for a function ¢: N — (0, 00) and a sequence (S"),

S"hi= (Kna” Hn)v n €N

of semi-normed spaces such that, for each N, K and for every choice of
finitely many vectors a; := (a;(j))}; € ¢, 1 <i < K, we have

K
H E ai”i
i=1

<W(N) sup [|(ai())ia ]| g

X(€X) 1N

that is,

< P(N) sup [[(ai() | g -

K
sup ’Z ai(j)vi sup
X \J\

1N 4

o A sequence (7;)ieny C X is said to satisfy the KSZ-inequality of type
(X, (S"),) provided that the above inequality holds.

M. Mastyto (UAM) IAbstract random polynomial inequalities in Banach s| 10 / 38



Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities

KSZ-inequalities by lattice constants

e If X is a Banach lattice, then for each n € N, the M-constant 1,,(X)
is defined by

1n(X) —sup{”liup |XJ|HX Ixillx <1, for1 << }

<<
e Properties: (1n(X))n is a non-decreasing sequence with p,(X) € [1, n]
for each n € N; (1n(X))n is a submultiplicative sequence, that is,
Lmn(X) < pm(X)pn(X), myneN;

o (22X} is non-increasing sequence (Abramovich-Lozanovskii (1973)).

o lim, o0 “"n € {0,1}. This implies p1,(X) = n for each n € N whenever
£n(X) =1.

limp_ o0

e Theorem (Abramovich—Lozanovskii (1973)) If lim,_, o @ =0, then
all odd duals of X are KB-spaces (Kantorovich-Banach spaces).
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Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities

Proposition (A. Defant-M. M) Let X be a Banach lattice over (2,.4,v) and let
¥ N — [1,00) be given by ¢)(n) := u,(X) for each n € N. Then every sequence
(7i)ien of random variables in X satisfies the KSZ-inequality of type (X, (S"),v),

<O(N) sup [[(ai)iallsn (@)L € €5
X 1SN

K
p |30
1N ; Ay

with " := (K", || - || ), where the semi-norm || - ||, (resp., norm || - ||, whenever
the ; are linearly independent) are defined by

”z”ﬂ = ||Zl’}’1 + ... +zn'7n||X7 Z = (217 s 7zn) eK".
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Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities

M-constants for some class of Orlicz spaces

Let &: Ry — Ry be an Orlicz function (that is, a convex, increasing and

continuous positive function with ®(0) = 0). The Orlicz space L¢ over

a measure space (Q, A, ;1) is defined to be the space of all f € L%(u1) such
that [, ®(A|f]) du < oo for some A > 0, and it is equipped with the norm

. L
Ifllo : |nf{)\>0, /QCD()\)du\l .

For 1 < r < 0o, the exponential Orlicz function ¢, (t) :=e" — 1, t > 0.

Theorem. [A. Defant—M. M] Let L¢ be an Orlicz space over a probability measure
space (Q, A, ) with ®(t) := e?(t) — 1 for all t > 0, where ¢ is an Orlicz function
on R, with, for some v > 0, o(st) < vp(s)p(t) for all s € (0,1] and t > 0.
Then, for each n € N, one has

C
¢~ (e(1)/(1 + logn)) ’

Nn(L¢) <

where C = (e — 1)yp(1).
Abstract random polynomial inequalities in Banach s 13 /38



Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities

Corollary For r € [1,00) let L, be an Orlicz space over a probability measure
space (Q,.A,v) with ,(t) = e — 1 for all t > 0. Then for each n € N one has

ialLe,) < (e~ 1)(1 + log n)?

S

14 / 38
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KSZ-inequalities for subgaussian random variables

KSZ-inequalities for subgaussian random variables

Let (2, A,P) be a probability space, and f a random variable. If f is real-valued,
then f is said to be subgaussian, whenever there exists s > 0 such that

s2)\2
E exp(Af) < exp (2), AER,

and if f is complex-valued, whenever there exists s > 0 such that

2|z
E exp(Re(zf) < exp > ) Z€ C.

The best such s is denoted by sg(f).
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KSZ-inequalities for subgaussian random variables

o A real-valued sequence (f,) is called subgaussian if there is s > 0 such that
for any x = (x,) € > of norm one, the random variable f = >~ " x,f, is
subgaussian. The best possible number s is denoted by sg((,)).

e A complex-valued sequence (f,) is said to be subgaussian, whenever (Ref,)
and the imaginary parts (Imf,), is subgaussian.

Examples

o Every sequence (v,) of independent, real (resp., complex) normal gaussian
variables is subgaussian with sg((v,)) = 1.

o Every sequences (¢,) of independent Rademacher variables is subgaussian
with sg((s,)) = 1.
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KSZ-inequalities for subgaussian random variables

Theorem (A. Defant-M. M.) Let (7;)ien be a (real or complex) subgaussian
sequence of random variables over (€2, A, P) with s = sg((;)). The following
statements are true for each K, N € N and all a1,...,ax € K& with

a; = (a,—(j))j'\’zl, 1 < i < KZ

(1) There is a constant C; = C(s) > 0 such that

K
Z%‘ai
i=1

(2) If in addition M = sup; ||7i||sc < o0, then for every r € (2,00) there is
a constant C, = C(r,s, M) > 0 such that for 1/r' :=1—1/r, we have

K
E Yidi
i=1

e Here /, o, for p € (1,00) denotes the Marcinkiewicz sequence space of all
scalar sequences x = (xx)x € w(N) equipped with the norm
xX{+ . X

[1x[lp.c0 == sup 11
neN nr

where (x/) denotes the decreasing rearrangement of the sequence (|xx|).
IAbstract random polynomial inequalities in Banach s| 18 / 38

< G(1+1ogN)? sup [[(ai(i))), s -
Ly, (€N) 1<jKN 2

sup ||(ai0)) 1, |
Lo (22) 1SN

o5 '
! oo
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KSZ-inequalities for subgaussian random variables

Variants of Kahane—-Salem—Zygmund inequality

Let P be an m-homogeneous random Bernoulii polynomial over a probability
measure (,.4,P) given by

P(w,z) := Z ca(w)caz®, we, zeC".

|al]=m

Theorem (F. Bayart (2012)) For an arbitrary n-dimensional Banach space
X, = (C",|| - ]|) and for every r € [2,00) one has

n

IE( sup |P(.7z)|) < C,(n(l+|ogm))% sup |ca|(rc:'!!>’1,zsup (Z‘Zk‘r,>r ,

z€Bx, |a|=m €8x, ")

3

where C, > 0 is a constant only depending on r.
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KSZ-inequalities for subgaussian random variables

Given a real number 1 < A\ < co. A Banach space X A-embeds into a Banach Y
whenever there exists an isomorphic embedding T of X into Y such

ITlx=y I T Hlrpg-x <A

In this case, we call T a A\-embedding of X into Y.

Theorem [A. Defant-M. M.] For every r € [2,00) there is a constant C, > 0 such
that, for every finite-dimensional Banach space E, for every A-embedding
I: E — (" and for every choice of x1,...,xx € E, we have

K
Z ViXi
i=1

<Gl +logN)T sup [[(0) G g -

L(P,(E) SIS
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KSZ-inequalities for subgaussian random variables

Theorem (A. Defant-M. M.) For every 2 < r < oo, there exists a constant C, > 0
such that, for any choice of polynomials P, ..., Px € T,,(C"), we have

ZsP ’

and for 2 < r < oo

< C2(n(1 + log m))% Séijn ||(P,-(z)),K:1HZ2 ,

sup
zeTn

kP2

K

sup Ze;P,-(z)‘

zeTr i—1

< G (n(1 + log m))% ZSELI]PN H(P:(Z)) -

L‘Pr
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KSZ-inequalities for subgaussian random variables

Theorem (Defant-M. M.) For every r € [2,00) there is a constant C, > 0 such
that for each m € Ny, n € N, every complex n-dimensional Banach space X, and
every choice of polynomials Py, ..., Px € P,(X), we have

K
sup Z’y,-P,-(z)’

zeBx i—1

< C,(n(l + log m))% Sequ H(P,-(z)),K:lHS,5 ,
z X r

Lv’r

where S/ .= (§ for r =2 and Sf .= (5 __ for r € (2,0).
The proof is based on the following result.

Proposition (A. Defant-M. M.) Let X be an n-dimensional Banach space, and

K C Bx a convex and compact subset, which satisfies a Markov—Fréchet
inequality with exponent v and constant M. For each m € N there exists a subset
F C K such that

IPllx < QSUI@\P(Z)HH P e Pm(X),
ze

with card F < N, where N = (1 4 2Mm”)" if X is real and N = (1 + 2Mm”)*" if
X is complex space. In other words the Banach space P,,,(X), 2-embeds into /..
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KSZ-inequalities for subgaussian random variables

Given a Banach space X and a nonempty compact subset K C Bx.

Definition. We say that K satisfies a Markov—Fréchet inequality whenever there is
an exponent v > 0, and a constant M > 0 such that for all P € P(X) one has

sup [[VP(z)|x- < M(degP)" sup |P(2)],
zeK zeK

where VP(z) € X* denotes the Fréchet derivative of P in z € K. If this
inequality only holds for a subclass P of P(X), then we say that K satisfies
a Markov-Fréchet inequality for P with exponent v and constant M.

Theorem (Harris (1997)) Let X be a complex Banach space. Then By satisfies
a Markov—Fréchet inequality with constant e and exponent v = 1.
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Random Dirichlet polynomials

Random Dirichlet polynomials

Combining Bohr's vision of ordinary Dirichlet series and the mentioned results, we
provide some new KSZ—-inequalities for random Dirichlet polynomials. Some
inequalities of this type recently played a crucial role within the study of Dirichlet
series.

Given a finite subset A C N, we denote by D, the Banach space of all Dirichlet
polynomials D given by

:Za,,n_s, seC,

neA

with {a,}nea C C. Since each such Dirichlet polynomial defines a bounded and
holomorphic function on the right half-plane in C, the space Dy forms a Banach
space equipped with the norm

N
D)o = sup \Zan | = sup | > 2.
=

Res>0
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Random Dirichlet polynomials

Remark We note that the particular cases a, = 1 and a, = (—1)" play a crucial
role within the study of the Riemann zeta-function ¢: C\ {1} — C. In fact, in
recent times, techniques related to random inequalities for Dirichlet polynomials
have gained more and more importance. This may be illustrated by a deep
classical result of Turdn (1962), which states that the truth of the famous
Lindeldf’s conjecture:

¢(1/2+it) = O(t°), teR,
with an arbitrarily small £ > 0, is equivalent to the validity of the inequality:

—1)"
> E)

n=1

< CNH(24[t))5, teR

for an arbitrarily small € > 0 and with C = C(¢).
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Random Dirichlet polynomials

In order to formulate our main result we need two characteristics of the finite set
A C N defining Da. As usual, for x > 2, we denote by 7(x) the number of all
primes in the interval [2, x|, and by Q(n) the number of prime divisors of n € N
counted accorded to their multiplicities. We define

MN(A) .= Tg}\(ﬂ(n), Q(A) = Tg}\(ﬂ(n).

Theorem (A. Defant-M. M.) For every r € [2,00) there is a constant C, > 0 such
that for any finite set A C N and any choice of Dirichlet polynomials
Dl,...,DK € Dp, we have

< ¢ (1+ N1 +2010g(4)) ) sup (D)l

LS

Lo,

M. Mastyto (UAM) IAbstract random polynomial inequalities in Banach s| 27 /38



Corollary. For every r € [2,00) there is a constant C, > 0 such that such, for
every Dirichlet random polynomial >~ _, Ynann~ 't in Dy one has

sup ’ Z%an it

sup < c,(1 +M(A)(1 +20log Q(A))) [l(@n)nealls, -

L#’r

Idea of proof:

e We embed D, into a certain space of trigonometric polynomials, controlling
the degree as well as the number of variables of the polynomials in this space.
To achieve this, we use the so-called Bohr lift:

Ba: Dp — %(A)(TH(A)), Z ann” " Z apaz(’

neA apreA
By Kronecker’'s theorem on Diophantine approximation we know that the
continuous homomorphism

ity (A
B:R— T ¢ (p,f)k(zl)

has dense range. This implies that B4 is an isometry into.
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Random Dirichlet polynomials

e Thereis a subset F T4 with card(F) < N = (1+20Q(A))™4) such that
I Taway(TMW) < £, 1(P) := (P(2))ieF,

is a 2-isomorphic embedding. Combining all these facts we get the above
theorem.

In the following example we consider interesting subclass of Dirichlet polynomials
of length N, each given by a particular finite subset A C N:

Example. For N € N and 2 < x < N define
AN, x) :={1<n<N; n(n) <x}.

Then Dy« is the space of all Dirichlet polynomials of length N, which only
'depend on 7(x)-many primes’. Using remarkable estimates for m(x) due to
Costa Periera (1985):
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Random Dirichlet polynomials

x log 2 5x
>5 d : 1,
log x <7w(x), x and 7(x) < Jlogx x >
we get M(A(N, x)) < m(x ) < 3|ogx Since for each 1 < n = p® < N with
a € N™™) we have 2/%l < N, it follows that
log N
Q(A(N <

With these estimates for M(A(N, x)) and Q(A(N, x)) our KSZ—inequalities extend
Queffélec’s results (1995).
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Random Dirichlet polynomials

In the special case x = N, we denote by Dy the Banach space of all Dirichlet
polynomials of length N, in other words, Dy = Dy with A(N) = {1,..., N},

Then 5N 0w N
AN)) < 28

3log N’ (AN)) < log?2 ~
It is worth noting that in the case N = p,, the nth prime, one has M(A(N)) = n.

M(A(N)) <
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Appendix

Random multilinear forms in Banach spaces

e Given Banach spaces X, ..., Xp,, the Banach space £,,(X1, ..., Xy,) of all
scalar-valued m-linear bounded mappings L on X; x --- X X, is equipped
with the norm

L] :=sup {|L(x1, ..., Xm)| - xj € Bx;, 1 <j < m}.

e For a given Banach space X and m € N, we denote by P,,(X) the Banach
space of all polynomials P on X of degree m (i.e., there is L € L,(X,...,X)
such that P(x) = L(x,...,x) for all x € X) equipped with the norm

1P| :=sup{|P(z)|: z € Bx}.

We let ||P||g := sup{|P(z)|; z € E}, whenever E is a non-empty subset of X.
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Appendix

Applying our techniques to spaces of multilinear forms on finite dimensional
Banach spaces, we can state the following theorem.

Theorem (A. Defant-M. M.) For every r € [2,00) there is a constant C, > 0 such
that, for every choice of finite dimensional Banach spaces X; with dimX; = n;,

1 <j < m, and m-linear mappings Ly, ...,Lx € Ln(X1,...,Xn), one has
K
sup ‘Zv;L,-(zl,.‘.,zm)‘
(217--~azm)€BX1><«-«><Xm i=1 L¢r
m 1
< Cr( nj(1—|—|ogm)) sup ||(L,-(zl,...,zm))f<:1”5,< ,
j=1 (Zl,...,zm)eBxlx...Xxm '

where S/ .= ¢ for r =2 and S .= (f __ for r € (2,00).

M. Mastyto (UAM) IAbstract random polynomial inequalities in Banach s| 34 /38



Appendix

The proof of the above theorem is based on the following result.

Proposition (A. Defant—M. M.) Let X; with dim X; = n;,1 < j < m be finite
dimensional (real or complex) Banach spaces. Then there is a subset
F C [1}, Bx; of cardinality

card(F) < H (1+ 2m)2nj

-
=

such that for every L € L,,(X1,..., Xn),

ILloo <2 sup |L(z1,...,2Zm)|-
(z1y-..,zm)EF

If all Banach spaces X are real, we may replace the exponents 2n; by n;.
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Appendix

Polynomial inequalities via random processes

e Given a pseudo-metric (T, d), we denote by N(T,d;e) the entropy function
associated with the pseudo-metric d on the set T fore > 0, i.e.,

N(T,d;¢)

is the smallest number of open balls of radius £ > 0 in the pseudo-metric d
needed to cover the set T.

o Let ®: Ry — R, be an Orlicz function. The entropy integral of (T, d) with
respect to @ is defined by

A(T)
Jo(T,d) = / ®~H(N(T, d;¢)) de,
0

where A(T) = sup, 7 d(s, t) denotes the diameter of T.
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Appendix

o If (X:)ieT is a stochastic process where T is an index set. Then

E(supXt) = sup{E(supXt) - FCT, F finite},
teT teF

where the right-hand side makes sense as soon as r.v. X; is integrable
for every t € T.
e A fundamental example of stochastic processes is a random series

Xe = &fi(t),

k>1

where fi are functions defined on a set T and & are independent random
variables on a measure space (Q, A4, u).

e The basis example is the random Fourier series,

Xe=> &’ te(o,1].

k>1
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Appendix

e Pisier's Theorem If (X;):c7 is a stochastic process in the Orlicz space
Lo (2, A, P) on a probability measure space such that

[ Xs — Xello < d(s,t), s, teT,
then we have

E(sup [Xs — Xi[) < Clo(T, d)
s,teT

for some absolute constant C > 0.

e A. Defant, D. Galicer, M. Mansilla, M. M., S. Muro, Projection constants
for spaces of multivariate polynomials, 2022, 181 pp. (Preprint).
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