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Introduction

Random polynomials

• For a multi-index α = (α1, . . . αn) ∈ Zn and z = (z1, . . . , zn) ∈ Cn, we let
|α| := |α1|+ . . .+ |αn| and zα := zα1

1 · · · zαn
n . For α = (α1, . . . αn) ∈ Nn

0,
α! := α1! · · ·αn!, where N0 := N ∪ {0}.

• If P : Cn → C is a polynomial given by

P(z) =
∑
α∈Nn

0

cαzα, z ∈ Cn ,

then its degree deg(P) := max{|α|; cα 6= 0}.
• For n ∈ N and m ∈ N0 we denote by Tm(Tn) the space of all trigonometric

polynomials
P(z) =

∑
α∈Zn

cαzα, z ∈ Tn

on the n-dimensional torus Tn with deg(P) := max{|α|; cα 6= 0} ¬ m.
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Introduction

The origin of trigonometric random polynomials goes back to the Salem and
Zygmund seminal Acta Math. (1954) paper, where they studied trigonometric
random polynomials of the type

∞∑
n=1

εncn cos(nt + ϕn), t ∈ [−π, π) .

This was continued by Kahane (1960), where the study was extended to random
polynomials in several variables. In the recent decades the multidimensional
variants of the Kahane-Salem-Zygmund inequalities (KSZ -inequalities for short)
have been of central importance in modern analysis, as, e.g., Fourier analysis,
analytic number theory, or holomorphy in high dimensions. The multidimensional
KSZ -inequality states:

Theorem There exists a positive constant C such that, for each m, n ∈ N with
m ­ 2 and any trigonometric polynomial

∑
α∈Zn cαzα in Tm(Tn) there exists

a choice of signs εα = ±1 for which

sup
z∈Tn

∣∣∣ ∑
|α|¬m

εαcαzα
∣∣∣ ¬ C

√
n log m

( ∑
|α|¬m

|cα|2
) 1

2

.
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Introduction

Extended variant of Kahane-Salem-Zygmund inequality

Theorem For every a > 0, each m, n ­ 2 and all families of (εα)α∈Zn,|α|¬m of
independent Bernoulli variables on a probability measure space (Ω,A,P) and all
non-zero (cα)α∈Zn,|α|¬m ⊂ C, we have

P
{
ω ∈ Ω; sup

z∈Tn

∣∣∣ ∑
|α|¬m

εα(ω)cαzα
∣∣∣ ­ a

√
n log m

( ∑
|α|¬m

|cα|2
) 1

2
}
¬ C(a) ,

where C(a) := 4
(
π2/(m a2

16 − 1)
)n.

Remark. For all a > 4
( log(2π2)

log 2 + 1
)1/2 one has C(a) < 1, so for this a we get

P
{
ω ∈ Ω; sup

z∈Tn

∣∣∣ ∑
|α|¬m

εα(ω)cαzα
∣∣∣ ¬ a

√
n log m

( ∑
|α|¬m

|cα|2
) 1

2
}
> 0 .
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Introduction

In what follows, we shall denote by `n
p the linear space Cn equipped with the

p-norm (1 ¬ p ¬ ∞).

Theorem (H. P. Boas (2000)) Let 1 ¬ p ¬ ∞ and m, n ­ 2. Then there exists
a choice of signs (εα)|α|=m, εα = ±1 such that

• If 1 ¬ p ¬ 2, then

sup
z∈B

`
(n)
p

∣∣∣ ∑
|α|=m

εα
m!
α! zα

∣∣∣ ¬ C
√

mn log m (m!)1−1/p.

• If 2 ¬ p ¬ ∞, then

sup
z∈B`n

p

∣∣∣ ∑
|α|=m

εα
m!
α! zα

∣∣∣ ¬ C
√

mn log m n(1/2−1/p)m (m!)1/2,

where C > 0 does not depend on m nor on n.
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Abstract random Kahane-Salem-Zygmund (KSZ -) inequalities

Abstract random Kahane-Salem-Zygmund
inequalities

• We let (Ω,A, µ) to be a measure space and let X be a Banach space.
L0(µ,X ) denotes the space of all equivalence classes of strongly measurable
X -valued functions on Ω. We let L0(µ) := L0(µ,K), where K := C or
K := R.

• E ⊂ L0(µ) is said to be a Banach function lattice(or space), if there exists
h ∈ E with h > 0 a.e. and E is an Banach ideal in L0(µ), that is, if |f | ¬ |g |
a.e. with g ∈ E and f ∈ L0(µ), then f ∈ E and ‖f ‖E ¬ ‖g‖E . By a Banach
sequence space we mean a Banach lattice E ⊂ ω(N) := L0(N, 2N, µ), where
µ is the counting measure.

• If E ⊂ L0(µ) is a Banach function lattice and X is a Banach space, then the
Köthe-Bochner space E (X ) consists of of all f ∈ L0(µ,X ) with ‖f (·)‖X ∈ E ,
and is equipped with the norm ‖f ‖E(X) := ‖ ‖f (·)‖X‖E .
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Abstract random Kahane-Salem-Zygmund (KSZ -) inequalities

• (A. Defant–M. M.) Given a Banach function space X over a probability
measure space (Ω,A,P) and a sequence of random variables (γi )i∈N ⊂ X ,
we are looking for a function ψ : N→ (0,∞) and a sequence (Sn),

Sn := (Kn, ‖ · ‖n), n ∈ N

of semi-normed spaces such that, for each N,K and for every choice of
finitely many vectors ai := (ai (j))N

j=1 ∈ `N
∞, 1 ¬ i ¬ K , we have

∥∥∥ K∑
i=1

aiγi

∥∥∥
X(`N
∞)
¬ ψ(N) sup

1¬j¬N

∥∥(ai (j))K
i=1
∥∥

SK ,

that is, ∥∥∥∥ sup
1¬j¬N

∣∣∣ K∑
i=1

ai (j)γi

∣∣∣∥∥∥∥
X
¬ ψ(N) sup

1¬j¬N

∥∥(ai (j))K
i=1
∥∥

SK .

• A sequence (γi )i∈N ⊂ X is said to satisfy the KSZ -inequality of type
(X , (Sn), ψ) provided that the above inequality holds.
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Abstract random Kahane-Salem-Zygmund (KSZ -) inequalities

KSZ -inequalities by lattice constants

• If X is a Banach lattice, then for each n ∈ N, the M-constant µn(X )
is defined by

µn(X ) := sup
{∥∥ sup

1¬j¬n
|xj |
∥∥

X : ‖xj‖X ¬ 1, for 1 ¬ j ¬ n
}
.

• Properties: (µn(X ))n is a non-decreasing sequence with µn(X ) ∈ [1, n]
for each n ∈ N; (µn(X ))n is a submultiplicative sequence, that is,

µmn(X ) ¬ µm(X )µn(X ), m, n ∈ N ;

•
(µn(X)

n
)

is non-increasing sequence (Abramovich–Lozanovskii (1973)).
• limn→∞

µn(X)
n ∈ {0, 1}. This implies µn(X ) = n for each n ∈ N whenever

limn→∞
µn(X)

n = 1.
• Theorem (Abramovich–Lozanovskii (1973)) If limn→∞

µn(X)
n = 0, then

all odd duals of X are KB-spaces (Kantorovich-Banach spaces).
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Abstract random Kahane-Salem-Zygmund (KSZ -) inequalities

Proposition (A. Defant–M. M) Let X be a Banach lattice over (Ω,A, ν) and let
ψ : N→ [1,∞) be given by ψ(n) := µn(X ) for each n ∈ N. Then every sequence
(γi )i∈N of random variables in X satisfies the KSZ -inequality of type (X , (Sn), ψ),∥∥∥∥ sup

1¬j¬N

∣∣∣ K∑
i=1

ai (j)γi

∣∣∣∥∥∥∥
X
¬ ψ(N) sup

1¬j¬N

∥∥(ai (j))K
i=1
∥∥

SK , (ai (j))N
j=1 ∈ `N

∞

with Sn := (Kn, ‖ · ‖n), where the semi-norm ‖ · ‖n (resp., norm ‖ · ‖n, whenever
the γi are linearly independent) are defined by

‖z‖n := ‖z1γ1 + . . .+ znγn‖X , z = (z1, . . . , zn) ∈ Kn .
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Abstract random Kahane-Salem-Zygmund (KSZ -) inequalities

M-constants for some class of Orlicz spaces

Let Φ: R+ → R+ be an Orlicz function (that is, a convex, increasing and
continuous positive function with Φ(0) = 0). The Orlicz space LΦ over
a measure space (Ω,A, µ) is defined to be the space of all f ∈ L0(µ) such
that

∫
Ω Φ(λ|f |) dµ <∞ for some λ > 0, and it is equipped with the norm

‖f ‖Φ := inf
{
λ > 0;

∫
Ω

Φ
( |f |
λ

)
dµ ¬ 1

}
.

For 1 ¬ r <∞, the exponential Orlicz function ϕr (t) := etr − 1, t ­ 0.

Theorem. [A. Defant– M. M] Let LΦ be an Orlicz space over a probability measure
space (Ω,A, ν) with Φ(t) := eϕ(t) − 1 for all t ­ 0, where ϕ is an Orlicz function
on R+ with, for some γ > 0, ϕ(st) ¬ γϕ(s)ϕ(t) for all s ∈ (0, 1] and t > 0.
Then, for each n ∈ N, one has

µn(LΦ) ¬ C
ϕ−1

(
ϕ(1)/(1 + log n)

) ,
where C = (e − 1)γϕ(1).
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Abstract random Kahane-Salem-Zygmund (KSZ -) inequalities

Corollary For r ∈ [1,∞) let Lϕr be an Orlicz space over a probability measure
space (Ω,A, ν) with ϕr (t) = etr − 1 for all t ­ 0. Then for each n ∈ N one has

µn(Lϕr ) ¬ (e − 1)(1 + log n) 1
r .
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KSZ -inequalities for subgaussian random variables

KSZ -inequalities for subgaussian random variables

Let (Ω,A,P) be a probability space, and f a random variable. If f is real-valued,
then f is said to be subgaussian, whenever there exists s ­ 0 such that

E exp(λf ) ¬ exp
(

s2λ2

2

)
, λ ∈ R ,

and if f is complex-valued, whenever there exists s ­ 0 such that

E exp(Re(zf ) ¬ exp
(

s2|z |2
2

)
, z ∈ C .

The best such s is denoted by sg(f ).
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KSZ -inequalities for subgaussian random variables

• A real-valued sequence (fn) is called subgaussian if there is s ­ 0 such that
for any x = (xn) ∈ `2 of norm one, the random variable f =

∑∞
n=1 xnfn is

subgaussian. The best possible number s is denoted by sg((fn)).

• A complex-valued sequence (fn) is said to be subgaussian, whenever (Refn)
and the imaginary parts (Imfn), is subgaussian.

Examples

• Every sequence (γn) of independent, real (resp., complex) normal gaussian
variables is subgaussian with sg((γn)) = 1.

• Every sequences (εn) of independent Rademacher variables is subgaussian
with sg((εn)) = 1.
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KSZ -inequalities for subgaussian random variables

Theorem (A. Defant–M. M.) Let (γi )i∈N be a (real or complex) subgaussian
sequence of random variables over (Ω,A,P) with s = sg((γi )). The following
statements are true for each K ,N ∈ N and all a1, . . . , aK ∈ `N

∞ with
ai = (ai (j))N

j=1, 1 ¬ i ¬ K :

(1) There is a constant C2 = C(s) > 0 such that∥∥∥∥ K∑
i=1

γiai

∥∥∥∥
Lϕ2 (`N

∞)
¬ C2(1 + log N) 1

2 sup
1¬j¬N

∥∥(ai (j)
)K

i=1

∥∥
`K

2
.

(2) If in addition M = supi ‖γi‖∞ < ∞, then for every r ∈ (2,∞) there is
a constant Cr = C(r , s,M) > 0 such that for 1/r ′ := 1− 1/r , we have∥∥∥∥ K∑

i=1
γiai

∥∥∥∥
Lϕr (`N

∞)
¬ Cr (1 + log N) 1

r sup
1¬j¬N

∥∥(ai (j)
)K

i=1

∥∥
`K

r′,∞
.

• Here `p,∞ for p ∈ (1,∞) denotes the Marcinkiewicz sequence space of all
scalar sequences x = (xk)k ∈ ω(N) equipped with the norm

‖x‖p,∞ := sup
n∈N

x∗1 + . . .+ x∗n
n1− 1

p
,

where (x∗k ) denotes the decreasing rearrangement of the sequence (|xk |).
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KSZ -inequalities for subgaussian random variables

Variants of Kahane–Salem–Zygmund inequality

Let P be an m-homogeneous random Bernoulii polynomial over a probability
measure (Ω,A,P) given by

P(ω, z) :=
∑
|α|=m

εα(ω)cαzα, ω ∈ Ω, z ∈ Cn .

Theorem (F. Bayart (2012)) For an arbitrary n-dimensional Banach space
Xn = (Cn, ‖ · ‖) and for every r ∈ [2,∞) one has

E
(

sup
z∈BXn

∣∣P(·, z)
∣∣) ¬ Cr

(
n(1 + log m)

) 1
r sup
|α|=m

|cα|
( α!

m!

) 1
r′ sup

z∈BXn

( n∑
k=1
|zk |r

′
) m

r′
,

where Cr > 0 is a constant only depending on r .
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KSZ -inequalities for subgaussian random variables

Given a real number 1 ¬ λ <∞. A Banach space X λ-embeds into a Banach Y
whenever there exists an isomorphic embedding T of X into Y such

‖T‖X→Y ‖T−1‖T (X)→X ¬ λ .

In this case, we call T a λ-embedding of X into Y .

Theorem [A. Defant–M. M.] For every r ∈ [2,∞) there is a constant Cr > 0 such
that, for every finite-dimensional Banach space E , for every λ-embedding
I : E → `N

∞, and for every choice of x1, . . . , xK ∈ E , we have∥∥∥∥ K∑
i=1

γixi

∥∥∥∥
Lϕr (E)

¬ Cr ‖I−1‖ (1 + log N) 1
r sup

1¬j¬N

∥∥(I(xi )(j))K
i=1
∥∥

SK
r′
,
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KSZ -inequalities for subgaussian random variables

Theorem (A. Defant–M. M.) For every 2 ¬ r <∞, there exists a constant Cr > 0
such that, for any choice of polynomials P1, . . . ,PK ∈ Tm(Cn), we have∥∥∥∥ sup

z∈Tn

∣∣∣ K∑
i=1

εiPi (z)
∣∣∣∥∥∥∥

Lϕ2

¬ C2
(
n(1 + log m)

) 1
2 sup

z∈Tn

∥∥(Pi (z))K
i=1
∥∥
`2
,

and for 2 < r <∞∥∥∥∥ sup
z∈Tn

∣∣∣ K∑
i=1

εiPi (z)
∣∣∣∥∥∥∥

Lϕr

¬ Cr
(
n(1 + log m)

) 1
r sup

z∈Tn

∥∥(Pi (z))K
i=1
∥∥
`r′,∞

.
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KSZ -inequalities for subgaussian random variables

Theorem (Defant–M. M.) For every r ∈ [2,∞) there is a constant Cr > 0 such
that for each m ∈ N0, n ∈ N, every complex n-dimensional Banach space X , and
every choice of polynomials P1, . . . ,PK ∈ Pm(X ), we have∥∥∥∥ sup

z∈BX

∣∣∣ K∑
i=1

γiPi (z)
∣∣∣∥∥∥∥

Lϕr

¬ Cr
(
n(1 + log m)

) 1
r sup

z∈BX

∥∥(Pi (z))K
i=1
∥∥

SK
r′
,

where SK
r ′ := `K

2 for r = 2 and SK
r ′ := `K

r ′,∞ for r ∈ (2,∞).

The proof is based on the following result.

Proposition (A. Defant–M. M.) Let X be an n-dimensional Banach space, and
K ⊂ BX a convex and compact subset, which satisfies a Markov–Fréchet
inequality with exponent ν and constant M. For each m ∈ N there exists a subset
F ⊂ K such that

‖P‖K ¬ 2 sup
z∈F
|P(z)‖F , P ∈ Pm(X ) ,

with card F ¬ N, where N =
(
1 + 2Mmν

)n if X is real and N =
(
1 + 2Mmν

)2n if
X is complex space. In other words the Banach space Pm(X ), 2-embeds into `N

∞.
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KSZ -inequalities for subgaussian random variables

Given a Banach space X and a nonempty compact subset K ⊂ BX .

Definition. We say that K satisfies a Markov–Fréchet inequality whenever there is
an exponent ν ­ 0, and a constant M > 0 such that for all P ∈ P(X ) one has

sup
z∈K
‖∇P(z)‖X∗ ¬ M(degP)ν sup

z∈K
|P(z)| ,

where ∇P(z) ∈ X∗ denotes the Fréchet derivative of P in z ∈ K . If this
inequality only holds for a subclass P of P(X ), then we say that K satisfies
a Markov-Fréchet inequality for P with exponent ν and constant M.

Theorem (Harris (1997)) Let X be a complex Banach space. Then BX satisfies
a Markov–Fréchet inequality with constant e and exponent ν = 1.
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Random Dirichlet polynomials

Random Dirichlet polynomials

Combining Bohr’s vision of ordinary Dirichlet series and the mentioned results, we
provide some new KSZ–inequalities for random Dirichlet polynomials. Some
inequalities of this type recently played a crucial role within the study of Dirichlet
series.

Given a finite subset A ⊂ N, we denote by DA the Banach space of all Dirichlet
polynomials D given by

D(s) :=
∑
n∈A

ann−s , s ∈ C ,

with {an}n∈A ⊂ C. Since each such Dirichlet polynomial defines a bounded and
holomorphic function on the right half-plane in C, the space DA forms a Banach
space equipped with the norm

‖D‖∞ := sup
Res>0

∣∣∣ N∑
n=1

ann−s
∣∣∣ = sup

t∈R

∣∣∣ N∑
n=1

ann−it
∣∣∣ .
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Random Dirichlet polynomials

Remark We note that the particular cases an = 1 and an = (−1)n play a crucial
role within the study of the Riemann zeta-function ζ : C \ {1} → C. In fact, in
recent times, techniques related to random inequalities for Dirichlet polynomials
have gained more and more importance. This may be illustrated by a deep
classical result of Turán (1962), which states that the truth of the famous
Lindelöf’s conjecture:

ζ
(
1/2 + it

)
= Oε(tε), t ∈ R ,

with an arbitrarily small ε > 0, is equivalent to the validity of the inequality:∣∣∣∣ N∑
n=1

(−1)n

nit

∣∣∣∣ ¬ C N 1
2 +ε(2 + |t|)ε, t ∈ R

for an arbitrarily small ε > 0 and with C = C(ε).
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Random Dirichlet polynomials

In order to formulate our main result we need two characteristics of the finite set
A ⊂ N defining DA. As usual, for x ­ 2, we denote by π(x) the number of all
primes in the interval [2, x ], and by Ω(n) the number of prime divisors of n ∈ N
counted accorded to their multiplicities. We define

Π(A) := max
n∈A

π(n), Ω(A) := max
n∈A

Ω(n) .

Theorem (A. Defant–M. M.) For every r ∈ [2,∞) there is a constant Cr > 0 such
that for any finite set A ⊂ N and any choice of Dirichlet polynomials
D1, . . . ,DK ∈ DA, we have∥∥∥∥ sup

t∈R

∣∣∣ K∑
j=1

γjDj(t)
∣∣∣∥∥∥∥

Lϕr

¬ Cr

(
1 + Π(A)

(
1 + 20 log Ω(A)

)) 1
r sup

t∈R

∥∥(Dj(t))K
j=1
∥∥

Sr′
.
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Random Dirichlet polynomials

Corollary. For every r ∈ [2,∞) there is a constant Cr > 0 such that such, for
every Dirichlet random polynomial

∑
n∈A γnann−it in DA one has∥∥∥∥ sup

t∈R

∣∣∣∑
n∈A

γnann−it
∣∣∣∥∥∥∥

Lϕr

¬ Cr

(
1 + Π(A)

(
1 + 20 log Ω(A)

)) 1
r ∥∥(an)n∈A

∥∥
Sr′
.

Idea of proof:

• We embed DA into a certain space of trigonometric polynomials, controlling
the degree as well as the number of variables of the polynomials in this space.
To achieve this, we use the so-called Bohr lift:

BA : DA → TΩ(A)(TΠ(A)) ,
∑
n∈A

ann−s 7→
∑

α:pα∈A
apαzα .

By Kronecker’s theorem on Diophantine approximation we know that the
continuous homomorphism

β : R→ TΠ(A) , t →
(
pit

k
)Π(A)

k=1

has dense range. This implies that BA is an isometry into.
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Random Dirichlet polynomials

• There is a subset F ⊂ TΠ(A) with card(F ) ¬ N = (1 + 20 Ω(A))Π(A) such that

I : TΩ(A)(TΠ(A)) ↪→ `N
∞ , I(P) := (P(zi ))i∈F ,

is a 2-isomorphic embedding. Combining all these facts we get the above
theorem.

In the following example we consider interesting subclass of Dirichlet polynomials
of length N, each given by a particular finite subset A ⊂ N:

Example. For N ∈ N and 2 ¬ x ¬ N define

A(N, x) := {1 ¬ n ¬ N; π(n) ¬ x} .

Then DA(N,x) is the space of all Dirichlet polynomials of length N, which only
’depend on π(x)-many primes’. Using remarkable estimates for π(x) due to
Costa Periera (1985):
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Random Dirichlet polynomials

x log 2
log x < π(x), x ­ 5 and π(x) < 5x

3 log x , x > 1 ,

we get Π(A(N, x)) ¬ π(x) < 5x
3 log x . Since for each 1 ¬ n = pα ¬ N with

α ∈ Nπ(x) we have 2|α| ¬ N, it follows that

Ω(A(N, x)) ¬ log N
log 2 .

With these estimates for Π(A(N, x)) and Ω(A(N, x)) our KSZ–inequalities extend
Queffélec’s results (1995).
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Random Dirichlet polynomials

In the special case x = N, we denote by DN the Banach space of all Dirichlet
polynomials of length N, in other words, DN = DA(N) with A(N) = {1, . . . ,N}.
Then

Π(A(N)) < 5N
3 log N , Ω(A(N)) ¬ log N

log 2 .

It is worth noting that in the case N = pn, the nth prime, one has Π(A(N)) = n.
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Appendix

Random multilinear forms in Banach spaces

• Given Banach spaces X1, . . . ,Xm, the Banach space Lm(X1, . . . ,Xm) of all
scalar-valued m-linear bounded mappings L on X1 × · · · × Xm is equipped
with the norm

‖L‖ := sup
{
|L(x1, . . . , xm)| : xj ∈ BXj , 1 ¬ j ¬ m} .

• For a given Banach space X and m ∈ N, we denote by Pm(X ) the Banach
space of all polynomials P on X of degree m (i.e., there is L ∈ Lm(X , . . . ,X )
such that P(x) = L(x , . . . , x) for all x ∈ X ) equipped with the norm

‖P‖ := sup{|P(z)| : z ∈ BX} .

We let ‖P‖E := sup{|P(z)|; z ∈ E}, whenever E is a non-empty subset of X .
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Applying our techniques to spaces of multilinear forms on finite dimensional
Banach spaces, we can state the following theorem.

Theorem (A. Defant–M. M.) For every r ∈ [2,∞) there is a constant Cr > 0 such
that, for every choice of finite dimensional Banach spaces Xj with dimXj = nj ,
1 ¬ j ¬ m, and m-linear mappings L1, . . . , LK ∈ Lm(X1, . . . ,Xm), one has∥∥∥∥ sup

(z1,...,zm)∈BX1×···×Xm

∣∣∣ K∑
i=1

γiLi (z1, . . . , zm)
∣∣∣∥∥∥∥

Lϕr

¬ Cr

( m∑
j=1

nj(1 + log m)
) 1

r sup
(z1,...,zm)∈BX1×···×Xm

∥∥(Li (z1, . . . , zm))K
i=1
∥∥

SK
r′
,

where SK
r ′ := `K

2 for r = 2 and SK
r ′ := `K

r ′,∞ for r ∈ (2,∞).
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The proof of the above theorem is based on the following result.

Proposition (A. Defant – M. M.) Let Xj with dim Xj = nj , 1 ¬ j ¬ m be finite
dimensional (real or complex) Banach spaces. Then there is a subset
F ⊂

∏m
j=1 BXj of cardinality

card(F ) ¬
m∏

j=1

(
1 + 2m

)2nj

such that for every L ∈ Lm(X1, . . . ,Xm),

‖L‖∞ ¬ 2 sup
(z1,...,zm)∈F

|L(z1, . . . , zm)| .

If all Banach spaces Xj are real, we may replace the exponents 2nj by nj .

M. Mastyło (UAM) Abstract random polynomial inequalities in Banach spaces 35 / 38



Appendix

Polynomial inequalities via random processes

• Given a pseudo-metric (T , d), we denote by N(T , d ; ε) the entropy function
associated with the pseudo-metric d on the set T for ε > 0, i.e.,

N(T , d ; ε)

is the smallest number of open balls of radius ε > 0 in the pseudo-metric d
needed to cover the set T .

• Let Φ: R+ → R+ be an Orlicz function. The entropy integral of (T , d) with
respect to Φ is defined by

JΦ(T , d) =
∫ ∆(T )

0
Φ−1(N(T , d ; ε)

)
dε,

where ∆(T ) = sups,t∈T d(s, t) denotes the diameter of T .
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• If (Xt)t∈T is a stochastic process where T is an index set. Then

E
(

sup
t∈T

Xt
)

:= sup
{
E
(

sup
t∈F

Xt
)

: F ⊂ T , F finite
}
,

where the right-hand side makes sense as soon as r.v. Xt is integrable
for every t ∈ T .

• A fundamental example of stochastic processes is a random series

Xt =
∑
k­1

ξk fk(t),

where fk are functions defined on a set T and ξk are independent random
variables on a measure space (Ω,A, µ).

• The basis example is the random Fourier series,

Xt =
∑
k­1

ξke2πikt , t ∈ [0, 1].
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• Pisier’s Theorem If (Xt)t∈T is a stochastic process in the Orlicz space
LΦ(Ω,A,P) on a probability measure space such that

‖Xs − Xt‖Φ ¬ d(s, t), s, t ∈ T ,

then we have
E
(

sup
s,t∈T

|Xs − Xt |
)
¬ CJΦ(T , d)

for some absolute constant C > 0.

• A. Defant, D. Galicer, M. Mansilla, M. M., S. Muro, Projection constants
for spaces of multivariate polynomials, 2022, 181 pp. (Preprint).
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