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Steady Euler equations for an inviscid incompressible fluid

v-Vv+Vp=0 inQ
divv=0 in Q

with v € C?(Q)

How does the flow inherit the geometry of the domain ?

@ Circular domains = circular flows ?

o Parallel domains = parallel flows ?

Sufficient conditions in dimension 2 ?
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|. Circular flows in annuli
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Theorem
Assume that v - e, = 0 on 9Q,p and |v| > 0in Q,p.
Then v is a circular flow

v(x) = V(|x]) ea(x)

with V #£ 0 in [a, b].

@ The streamlines =, = {&(t) : t € I} are concentric circles

gx(t) = V(€X(t))7 §x(0) =X

e Equivalent formulation: any non-circular flow must have a
stagnation point in €, p.

o It is sufficient to assume that the set of stagnation points is properly
included in C, = {|x| = a} or in Cp, = {|x| = b}.

Frangois HAMEL www.i2m.univ-amu.fr/perso/francois.hamel /



Without the assumption |v| > 0, the conclusion does not hold in general !
For any classical function u solving
Au+f(u)=0inQ,p
with u constant on {|x| = a} and on {|x| = b}, then
v=Vstu
obeys the Euler equations (pressure p = —|Vu|?/2 — F(u) and F' = f).
If u has critical points, then v has stagnation points.

If uis not radial, then v is not a circular flow.

Example:

—" —r 71 +r20=Xp and ¢ >0 in(a,b)
p(a) = ¢(b) =0
Then u(x) = ¢(r) cos(f) solves Au+Au=0, with 6 critical points in Q, ;,

= v = V=u is a non-circular flow with 6 stagnation points
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The condition |v| > 0 in Q, 1, is obviously not equivalent to being a
circular flow !

There are circular flows with stagnation points (besides the trivial flow !)

Example:

¢(a) = o(b) =0

Then u(x) = ¢(r) solves Au+ pu =0, with

{ —¢" —r ¢’ =p¢ and ¢ >0 in (a,b)

{critical points} = C,» = {|x| = r*}
forsome a< r* < b

— v = V<uis a circular flow with infinitely many stagnation points
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Scheme of the proof

@ Stream function v of the flow v:
Viu=v
with
u(x)=c for|x|=a
u(x) =0 for |x|=b

@ Any streamline I intersects any trajectory X of ¢(t) = Vu(o(t))

u=0
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e Without loss of generality: ¢ >0

@ Then
O<u<c inQ,p
o Vorticity
Qo O _ 5
é)xl 3X2

is constant along the streamlines (from the Euler equations !)

@ Semilinear elliptic equation
Au+f(u)=0
with f(s) = —Au(c(07*(s))) for s € [0, c] and 6(t) = u(o(t))
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Theorem [Sirakov]

Let f : [0, c] — R be Lipschitz continuous.
Let Q.5 ={a< |x| < b} CR" and u € C?(Q, ) solve

Au+f(u)y=0 inQ.p
O<u<c in Q,p

with u =0 on {|x| = b} and u = c on {|x| = a}.
Then u is radially symmetric and decreasing:

u(x) = U(lx]) in Qap

and U'(r) <0 forall a<r<b.

e Conclusion of the theorem for the Euler equations (with Q,, C R?):

v=Vitu=U(|x|)es(x)
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Exterior domains Q, .. = {|x| > a} with a >0

Theorem
Assume that v - e, = 0 on C,, together with

. 1
QTL [v|>0 and v(x)-e(x)= 0(7) as |x| — +oc.

Then v is a circular flow

v(x) = V(|x]) es(x)

with V' # 0 in [a, +00)

@ The streamlines =, are concentric circles
@ The stream function v is radially symmetric (Liouville-type result)

@ The flow is not assumed be bounded, example: v(x) = |x]| eg(x)
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Counter-example without the condition v(x)-e.(x) = o(1/|x]) as |x| = o0
2
u:2(r—271>+<175) cosf
a a r
8 .
(Au = —in Q0, u=0o0n Ca)

g + (1 + r%) cose} ep + [(é — r%> sinO} er

v| >2/a>0. But

v(x) - e(x) = (% - ﬁ) ‘);—2‘ # o(ﬁ) as |x| — +o0

One has infg, _ |

and v is not a circular flow !

The limiting radial oscillation of the far streamlines is a/2.
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Scheme of the proof

Stream function u, with u =0 and Vu-e > 0on C, (w.l.o.g.)
Trajectory of the gradient flow ¢ (t) = Vu(o(t)) with 0(0) = A€ G,
lo(t)| = +00 and u(o(t)) = +00 as t > Tpax

For each t € [0, Tppax), the streamline =, ;) surrounds the origin

(continuation argument, with assumption infg, _ |v| > 0)
All streamlines surround the origin
u>0in Q.. (and u(x) = 400 as |x| = +0o0)

Radial oscillation max |y| — min |y| — 0 as |x| — 400
Y€K Y€K

Equation Au+ f(u) =0 in Q, o for some C! function f : Ry — R

Method of moving planes (Alexandroff, Gidas-Ni-Nirenberg) —
monotonicity of u in any direction e in Q=, N Q, o N{y-e> ¢}

Limiting argument = radial symmetry of u
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Further results in Q, ., with infq, _|v| > 0:

v-eg>0o0on C, = sup (%—%)>0
ano 6x1 8x2

(argument by contradiction and inversion of variables)

Not true without the condition infq, _|v| > 0, example:
v(x) = |x|"2ey(x), vorticity = —|x| 73 < 0

Further results in punctured disks Qo , = {0 < |x| < b} with
conditions as |[x| — 0

Further results in the punctured plane Qg ., = R?\{0} with
conditions as |x| — 0 and |x| — +0
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Serrin-type free boundary problems,
with overdetermined boundary conditions

Theorem

Let Q be a C? non-empty simply connected bounded domain of R?.
Assume that v - n =0 and |v/| is constant on 0.
Assume moreover that v has a unique stagnation point in Q.
Then, up to a shift,
Q= Br

and the unique stagnation point of v is the center of the disk.

Furthermore, v is a circular flow:
v(x) = V(|x|) eg(x) for all x € Br\{0}
with V' # 0 in (0, R] and V/(0) = 0.
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Scheme of the proof

@ Stream function u: u=0o0n 9Q and u > 0in Q (w.l.o.g.)

e Equation
Au+f(u)y=0inQ

(because of unique stagnation point z)

Overdetermined boundary condition
Vu - n = constant on 0f2

If f were Lipschitz continuous on [0, maxg u], then Q is a ball and u
is radially symmetric [Serrin]

@ Here f can be non-Lipschitz-continuous at the left of max u = u(z)
Q

(example: v(x)=—4|x|’x" in Bg, u(x)=R"—|x|*, Au+16+v/R*—u=0)

Serrin-type argument in Q\ N (z,&) = almost monotonicity of Q
with respect to any line containing z

e — Q = B(z,R) and u is radially symmetric, and v is a circular flow
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Related free boundary problems:

e Vorticity = 1p in R? and v - n =0 on 9D (vortex patch)
= D is a disk (Rankine vortex)

@ Smooth solutions in R? with nonnegative compactly supported
vorticity are circular

@ Further results for non-stationary uniformly-rotating solutions

[Fraenkel] [G6mez-Serrano, Park, Shi, Yao]

[Hmidi] [Hmidi, Mateu, Verdara] (doubly connected vortex patch)

Conjecture

If D is an open disk, z € D and v € C*(D\ {z}) is bounded, and
v-n=0o0n9D and |v|>0in D\ {z},

then z is the center of D (and then v is circular)
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Theorem

Let wi and wo be two C? non-empty simply connected bounded domains
of R? such that @7 C wo, and let

Q:UJQ\U:[.

Assume that v - n =0 and |v/| is constant on dw; and on dws,.

Assume moreover that |v| > 0 in Q.

Then w; and wy are two concentric disks: up to shift,

Q=Q,

and v is a circular flow.

@ Stream function: u=con dwy, u=00n dwy and 0 < u < cin Q

Equation Au+ f(u) =0 in Q with f : [0, c] — R of class C*([0, c])

Overdetermined conditions: Vu - n is constant on dw; and on dw»

[Reichel] [Sirakov] = Q = Q,  (up to shift)
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[I. Parallel flows in parallel domains

Parallel flow in dimension N
V= (Vl,Oa"' ’0)
(up to rotation) and

vi = wvi(xe, -, xn)

Parallel flow <= the pressure p is constant

Parallel flows in two-dimensional domains Q C R? ?
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Two-dimensional strip

Q =Rx(0,1) = {x=(x1,%) ER? 0<x <1}

Theorem
Assume that v, = 0 on 9Q; (v - n =0 on 995) and

inf [v| > 0.
Q

Then v is a parallel flow:

v(x,x2) = (vi(x2),0) in Q.

Remark: The flow v is not assumed to be a priori bounded in €,. But it
is a posteriori bounded from the conclusion, since v = (v1(x2),0) and the
cross section [0, 1] is bounded.

[Kalisch] : additional assumption that v; > 0 in Q,
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Sufficient condition infq, |v| > 0: no stagnation point in Q3 nor at infinity

@ Theorem: any non-parallel flow which is tangential on 92, must
have a stagnation point in €, or at infinity.

e Example 1: cellular flow (for o # 0)
v(xt,x) = V*(sin(ax)sin(mxp))
= (= msin(axy) cos(mxz), a cos(axy ) sin(mxz))

with p(x1, %) = (72 /4) cos(2ax1) + (% /4) cos(2mx2).

Stagnation points in Q.
@ Example 2:

v(x1, %) = V*(sin(mx;) €) = (— mcos(mxz) €4, sin(mxz) €)
with p(x1, %) = —(72/2)e®x.

No stagnation point in Qy, but infq,|v| = 0.

But parallel flows v = (v1(x2),0) do not necessarily satisfy infq,|v| >0 /
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Theorem does not hold in dimension 3
Q={x=(x1,%,x) ER xZ+x3 <1}
Flow
v(x) = (1, —x3,x2)
tangential on the boundary 092, and
1<|v|<V2in Q.

Ry 2
Pressure p(x) = LT —;X3

The flow is not a parallel flow !
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Half-plane
RZ =R x (0,+00) = {x = (x1,%) € R?, x, >0}

Theorem
Assume that v, = 0 on 9RZ (v-n =0 on JR2) and

0 < inf|v| < sup|v| < +oo.
]R%r R2

2]
Then v is a parallel flow:

v(x1, x2) = (va(x2),0) in @
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The strict inequalities 0 < infgz [v| < supR2+|v| < 400 cannot be dropped
in general

o Example 1: cellular flow
v(x,x) = V*(sin(axi)sin(mx))
= (= msin(axy) cos(mx2), a cos(axy ) sin(mx) )
It is bounded in R?, tangential on OR3 .
But infR2+|v| = mingz [v| =0, and v is not a parallel flow.

@ Example 2:
v(x1,x2) = V*(xz cosh(x1)) = (— cosh(x1), xz sinh(x1))

with p(x1, %) = — cosh(2x;)/4 + x2/2.
The flow v is tangential on 9R? and inf]R2+|v| > 0.

But supR2+|v| = 400, and v is not a parallel flow.

Open question:
Can the assumption 0 < infg |v| < SUPRZJV\ < 400 be replaced with

VA>0, 0< inf |v|< sup |v|<+o0?
Rx(0,A) Rx (0,A)
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The plane R?

Theorem

Assume that

0 <inf|v| <sup|v| < +o0.
R2 R2

Then v is a parallel flow: there exist a unit vector e and V : R — R s.t.

v(x) = V(x-et)e in R?

(hence, v - e has a constant sign).
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Let v be a C%(R?) periodic flow.

If [v| > 0in R?, then v is a parallel flow.

Let v be a parallel flow such that 0 < infgz|v| < suppe|v| < +00.

If |v/ — v[[ior2) << 1 and v/ is C*(R?), then v/ is a parallel flow.

Remark: in the theorem, if one also assumes that v - e > 0 in R? for
some unit vector e, then the proof is much easier!
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[Il. Proofs in parallel domains

Proof in the case of the two-dimensional strip Q, =R x (0,1)

e Stream function u € C3(Qy) defined by

ou ., ou
8X1 - 8X2

= _Vl
[Vul=|v|>n>0
Normalization u(0,0) =0

vo =0 on 0 —
u=0on{xx =0} and u=con {xx =1} (c €R)

Each level curve T, of u (connected component of the level set of u
containing z) is the streamline of the flow v containing z
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@ The streamlines are unbounded:

Lemma
Let I C Q5 be a streamline.

Let v : R — I be a parametrization of I'.

Then
[v(t)] = 400 as t — Fo0.
Xy = 1 X =1
Xy, = 0 Xz =0
(d) A possible streamline I’ (e) Another possible streamline T
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e B(x,r)={ye, |y—x|<r}

Given point x € Q, and given € > 0.

Then, there is r > 0 such that:

Vy,z e B(x,r), disty(l,,l;) <e.

(g) Impossible

Frangois HAMEL www.i2m.univ-amu.fr/perso/francois.hamel/



@ Streamlines go from —oo to +o00 in the direction x;

Let I c Q5 be a streamline.

Then I has a parametrization v : R — T, t — ~(t) = (71(t), 72(t)) such
that

71(t) = £o0 as t — +oo.

Proof: continuation argument

X, =1 X, =1 \\\ I:'
/—\/\F/_ r ,\'\\
Xy = 0 X3 =0 P N
(h) Any streamline ' (i) Impossible

Francois HAMEL
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@ vu=00n0Y% = u=00n{xx =0} and u=con {xx =1}

Assume (0,0) = —v1(0,0) > 0 (w.l.o.g.)

u
8X2

The function u is bounded in €.

Furthermore, ¢ > 0 and
O<u<cin

Trajectory ¥ of the gradient flow 6(t) = Vu(o(t)) with o(0)=(0,0)
and t € [0, 7].

(a,1) u=c

2 T

(0,0) u=0
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o Vorticity

aVQ 8v1
—c _—_ - =A
8x1 8X2 4

is constant along the streamlines:
v-V(Au)=0in Q,
@ Semilinear elliptic equation
Au+f(u)=0in

with f(s) = —Au(c(07*(s))) for s € [0, c] and 6(t) = u(o(t))
(Au(o(t)) + f(u(a(t)) = 0)

o [Berestycki, Caffarelli, Nirenberg] = g—Xu >0
2

@ Liouville-type theorem with sliding method =

u(x1, x2) = U(x2) and v(x1, x2) = (—U'(x2),0) is a parallel flow.
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Proof in the case of the half-plane R2 = R x (0, +0)

o Potential function u € C3(R2) defined by

Qu ., ou__,
6X1 - 8X2 - !
Normalization u(0,0) =0

v» =00n dR? = u=00n JR? = {x =0}

@ The streamlines are unbounded.

Let v : R — I be a parametrization of a streamline [ C @ Then
|v(t)| = 400 as t — £o0.
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e B(x,r)= {ye@, ly — x| < r}
For any point x € ]Rj+ and any € > 0, there is r > 0 such that:

Vy,ze€ B(x,r), disty(l,,l;) <e.
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@ All streamlines are bounded in the direction x»:

Let I C @ be a streamline.
Then there is A > 0 such that
FcRx[0,A4]

and I has a parametrization 7:R—T, t—~(t)=(71(t),72(t)) such that

71(t) = £oo as t — too.

Proof: continuation argument
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® v, =00n9dR2 = u=0on {x =0}

Assume (0,0) = —v1(0,0) > 0 (wlog)

u
8X2

Then
u>0inR%

Trajectory ¥ of the gradient flow 6(t) = Vu(o(t)) with o(0)=(0,0)
and t € [0, +00).
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aV2 avl

e Vorticity I = Au constant along the streamlines:
X1

%
@ Semilinear elliptic equation
Au+ f(u)=0in R2
with f(s) = —Au(c(07*(s))) for s € [0, +o0) and 6(t) = u(o(t))
(Au(o(t)) + f(u(o(t)) = 0)
@ u=0o0n0R3 and u>0in R} =

Ou

5% >0in Ri

[Berestycki, Caffarelli, Nirenberg], [Dancer], [Farina, Sciunzi|

e |Vu| =|v| bounded =
u(x1, x2) = U(x2)
[Farina, Valdinoci]

Conclusion: v(x1,x2) = (—U'(x2),0) is a parallel flow.
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Proof in the case of the plane R?

Stream function u € C3(R?) defined by

Qu ., Ou
8x1_ 2 8xz

= _Vl

The streamlines are unbounded.

The trajectories of the gradient flow are unbounded.

@ Each level set of u has only one connected component.

Equation for the stream function:

Au+ f(u) =0in R?
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e Argument ¢ of v:

@ Uniformly elliptic equation

| div(|v’V) =0 |

Key-estimate

[6(x)| = O(In |x|) as |x| — +oo.

o [Moser] = ¢ is constant = v is a parallel flow.
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