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Part 1. Introduction
Important issue in ecology: biodiversity, coexistence of many

species
Estimated numbers of current species on Earth in an AMS article
by J. Malkevitch

- Animal species: 7.8 million of which 953,434 have been ”described.”
- Plant species: 300,000 with only 215,644 being ”described.”

- Fungi species: 610,000 of which 43,271 have been ”described.”

Biological interactions: competition, cooperation (mutualism),
parasitism, commensalism, ...

We focus on competition.
Questions: relation between competition and coexistence
1. Does competition always reduce the chance of coexistence?

Or sometimes it helps coexistence?

2. Can species coexist under strong competition?



Lotka-Volterra competition system

ODE:

{
ut = u(r1 − c11u− c12v)

vt = v(r2 − c21u− c22v)

PDE:

{
ut = d1 ∆u+ u(r1 − c11u− c12v)

vt = d2 ∆v + v(r2 − c21u− c22v) on Ω× (0, T )

strong competition: only one species survives for almost all initial data
weak competition: 2 species coexist

Hofbauer and Sigmund



Strong competition in PDE case:
Theorem (K. Kishimoto, 1981) Consider the 2-species system with
Neumann boundary condition on a convex domain. Then a stable steady
state must be a constant.
Proof: 2-species system is monotone. Apply the comparison principle.

Theorem (H. Matano-M. Mimura, 1983) If the domain is far from being

convex, then there exists a stable spatially-inhomogeneous equilibrium

solution.

Mimura–Tohma’s simulation

It is hard for 2 species to coexist in general.



3-species competition-diffusion system:


ut = d1 ∆u+ u(r1 − c11u− c12v − c13w)

vt = d2 ∆v + v(r2 − c21u− c22v − c23w) on Ω× (0, T )

wt = d3 ∆w + w(r3 − c31u− c32v − c33w)

• 2-species system is a monotone system. 3-species system is much

more complicated: no comparison principle.



2-species traveling wave

1. Traveling waves are important in understanding the dynamical
behavior.

2. The sign of the wave speed tells us which species is stronger
in the PDE case. (Blue one is stronger)

2-species traveling wave:

Theorem (Gardner, Conley-G, Kan-on, K-Fang 82, 84, 95, 96)
Suppose that u and v are in strong competition. Then up to a
translation, there exists a unique monotone traveling wave connecting

(0,
r2
c22

) and (
r1
c11

, 0). Moreover this wave is stable.

Question: What kind of waves can the 3-species system have?



3-species traveling wave

I
monotone wave P. D. Miller, 1997 H. Ikeda, 2001

I Question: Does there exist a type 4 wave?

Type 4

Consider the scenario:
Assume v � w,w � u, u � v. Initially v, w, u occupy the left,
middle, and right. In the long run, can the 3 species develop into a
wave with w in the middle?
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Part 2. Existence of type 4 wave
I. Exact wave solutions for 2-species
• No good methods and techniques to tackle the problem. We turned

to find exact solutions.

• M. Rodrigo and M. Mimura (2000, 2001): exact solutions of 2-species
competition systems and other RD equations{

uxx + sux + u (1− u− hv) = 0

dvxx + svx + rv(1− ku− v) = 0 on R{
u(z) = 1

2 (1 + tanh z)

v(z) = 1
4 (1− tanh z)2, z = px− st,

where d =
r

3h
, k =

2− h
r

+ 5
3 , p =

√
2h

4
, s =

2− h
4

.



3-species competition-diffusion system:


ut = d1 ∆u+ u(r1 − c11u− c12v − c13w)

vt = d2 ∆v + v(r2 − c21u− c22v − c23w) on Ω× (0, T )

wt = d3 ∆w + w(r3 − c31u− c32v − c33w)

• 2-species: v = G(u). 3-species: v = G(u), w = H(u).
(Unfortunately hard to apply to 3 species and get a solution.)

• 2-species system is a monotone system. 3-species system is much

more complicated: no comparison principle.



II. Exact and numerical waves
Chen, Hung, Mimura, and Ueyama 2012;
Chen, Hung, Mimura, Ueyama, and Tohma 2013;

Type 4 wave
• Assumed the solution = quadratic polynomials of tanh and

calculated by hand. The first example (similar to the below) was found:
u

′′
+ su′ + u (1− u− 8

5v − 2w) = 0

v
′′

+ sv′ + v(1− 19
25u− v −

1
16w) = 0 on R

w
′′

+ sw′ + w(1− 18
25u−

8
5v − w) = 0

has an exact TW solution
u(z) = 1

2 (1 + tanh( z5 ))

v(z) = 1
4 (1− tanh( z5 ))2

w(z) = 4
25 (1− tanh2( z5 )) with speed s = 11

50

One can obtain more TW solutions if the coefficients satisfy suitable

algebraic relations.



2-species wave, s < 0 exact wave, s < 0 numerical wave, s > 0

c23 by AUTO numerical method



Two-peak wave

Type 4 wave:

Chen-Hung-Mimura-Ueyama-Tohma 2013 (Ikeda wave with sharp peaks)



Appears in more complicated interactions:



Semi-exact solution:
Question: Is it possible to construct exact solutions for 2-peak waves?

I type 4 wave: (1) assume the wave is a simple polynomial of tanh;
(2) tanh′ z = a polynomial of itself = 1− tanh2 z.

I We failed to find a 2-peak exact solution through this ansatz.

I 2-peak wave: (1) the wave is a polynomial of some function T (z);
(2) T ′(z) = a simple polynomial of itself = P (T (z));
(3) Mathematica.

Since T (z) is defined implicitly by its ODE, such a wave is called a
semi-exact solution.
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The 3-species system has the solution

• w = uv, some hint?



Profiles of T, u, v, w: d
dxT = [1− T 2][1 + (n+ 1)T 2].



III. Spiral waves and dynamical patterns
- applications of type 4 waves

Spiral wave
• u,v,w are symmetric (Ei–Ikota–Mimura, 1999): spiral wave
• u,v,w are asymmetric (Mimura–Tohma, 2015): use type 4 wave to

construct spiral wave in more general situation

.....





More dynamical patterns
• Mimura–Tohma (Ecol. Complexity, 2015), Contento–Mimura–Tohma

(JJIAM, 2016): more waves, patterns and their interactions
Dynamical coexistence pattern

Wedge shape traveling wave



IV. Observation and conclusion

• 3 species have more chance than 2 species to coexist under strong
competition.
It seems coexistence is easier to happen as a dynamical pattern rather
than a steady state.
• Under suitable conditions, even very strong competition alone can

support coexistence.
• A 3 species system may produces ”cyclic-like dominance” or other

mechanisms to sustain the coexistence.

• Type 4 waves serve as a basic building block for complicated patterns.

Question: How to construct more type 4 TW?



Part 3. Method of gluing bifurcation theory

Use the theory developed by Kokubu, Chow, Deng, Terman and Fiedler
to construct a TW with long w in the middle.

+

=⇒

Let τ = (r2, c21, c12, r3, c31, c32, c23, c13). For τ = τo, ∃ two 2-species
waves with the same speed (τo, called the bifurcation point). Then
perturb τo suitably to get a 3-species wave.



(H1) hi(z, µ0) are generic in the sense that, as z → −∞, hi(z, µ0)
(i = 1, 2) approaches Oi(µ0) along the eigenspace associated with
νi(µ0), and as z → +∞, it approaches Oi+1(µ0) along the eigenspace
associated with −ρi+1(µ0).

(H2) The unstable manifold Wu(Oi(µ0)) (i = 1, 2) and the stable
manifold W s(Oi+1(µ0)) have 1-dimensional intersection, i.e.,

dim {TpWu(Oi(µ0)) ∩ TpW s(Oi+1(µ0))} = 1

for all point p ∈ hi(z, µ0), where TpW denotes the tangent space of the
manifold W at p.

(H3) Wu(Oi(µ0)) (i = 1, 2) is transversal to 4-dim ν-stable manifold
W ν,s(Oi+1(µ0)) which is invariant and is tangent to the eigenspace
corresponding to νi+1(µ0), −ρi(µ0), −ηij(µ0) (j = 1, 2). Also,
W s(Oi+1(µ0)) is transversal to 4-dim (−ρ)-unstable manifold
W−ρ,u(Oi(µ0)) corresponding to −ρi(µ0), νi(µ0), κik(µ0) (k = 1, 2).

(H4) The vectors given by the integrals

q1 :=

∫ ∞
−∞

q̂1(z)∂µF (h1(z, µ0);µ0)dz, q2 :=

∫ ∞
−∞

q̂2(z)∂µF (h2(z, µ0);µ0)dz

are linearly independent, where up to a scalar multiple, q̂i(z) is the
unique non-trivial bounded solutions of ẑ′ = −ẑ · ∂Y F (hi(z, µ0), µ0).

If ν2(µ0) = ρ2(µ0), then one additional hypothesis is needed:



(A1) The species are in strong competition.
(A2) The two species waves are stable in the 3-species system.

(H. Ikeda)
(A3) The linearized behavior is dominated by the two species waves.

O1 : λ1,±u , λ1,±v , λ1,±w ; O2 : λ2,±u , λ2,±v , λ2,±w ; O2 : ......
λ1,−u < max

{
λ1,−v , λ1,−w

}
< 0 < min

{
λ1,+v , λ1,+w

}
< λ1,+u ,

max
{
λ2,−u , λ2,−v

}
< λ2,−w < 0 < λ2,+w < min

{
λ2,+u , λ2,+v

}
,

λ3,−v < max
{
λ3,−u , λ3,−w

}
< 0 < min

{
λ3,+u , λ3,+w

}
< λ3,+v ,

λ1,−v 6= λ1,−w , λ1,+v 6= λ1,+w , λ3,−u 6= λ3,−w , λ3,+u 6= λ3,+w .


Theorem (CH Chang-C, JDDE 2021) Assume (A1)-(A3). Then ∃ Type

4 wave if the parameters are perturbed in suitable directions.



Example
dv = dw = 1, s = α−1√

2(α+1)
, r2,0 = A(α), α > 1

3 , A(α) = α(3α−1)
α+1

Φ1 (z) =

 0
v0
wL

 (z) =


0

A(α)

4

(
1− tanh

√
A(α)+α

8 z

)2

α

4

(
1 + tanh

√
A(α)+α

8 z

)2

 ,

Φ2 (z) =

 u0
0
wR

 (z) =


1

4

(
1 + tanh

√
1+α
8 z

)2
0

α

4

(
1− tanh

√
1+α
8 z

)2
 .



Part 4. Weak interaction

Theorem (Chang-C-Hung-Mimura-Ogawa, Nonlinearity 2020)

If ε1 and ε2 are small, then ∃ a stable type 4 wave.
Proof: Prove the existence for the case ε1 = ε2 = 0.

Then use perturbation argument.



Λ = { coefficients: which admit a type 4 TW }



Question: What happens if the effect of w on u, v is not week?
(ε1, ε2 are big)

Drift bifurcation + exact solution: Ei, Ikeda, Mimura and Ogawa.
- Find an exact 3-species solution for non-small ε1, ε2.
- Prove the first eigenfunction also has an exact form.
- Use bifurcation theory to construct solution theoretically and

numerically.



3=2+1 reduction:
ut = d1 uxx + u(r1 − c11u− c12v − c13w)

vt = d2 vxx + v(r2 − c21u− c22v − c23w) on R
wt = d3 wxx + w(r3 − c31u− c32v − c33w)

Important to estimate puv(z) = c31u(z) + c32v(z)

Question: Assume
ut = ∆u+ f(u, v)

vt = d∆v + g(u, v) on Ω

Neumann boundary condition.

If d 6= 1, how to estimate αu+ βv?



For 1-dim traveling wave solution, such estimates can be obtained.
uzz + s uz + u (1− u− a1 v) = 0,

dvzz + s vz + v (1− a2 u− v) = 0, z ∈ R.

(u, v)(−∞) = (1, 0), (u, v)(∞) = (0, 1).

Theorem (LC Hung-C, JDE 2016) Assume a1, a2 > 1. Then for α > 0
and β > 0,

min
[ α
a2
,
β

a1

]
min[

1

d
, d] ≤ αu+ βv ≤ max

[
α, β

]
max[

1

d
, d].



Proof: N-barrier method

qzz(z) + s pz(z) + α f(u, v) + β g(u, v) = 0

qz(z2)− qz(z) + s(p(z2)− p(z)) +

∫ z2

z

[α f(u, v) + β g(u, v)] = 0

	

	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

v 

u 

(0,a) 

(1,0) 

g =0 

f =0 

q = u + d v = 2 

q = 1 

p = u +  v =  



Application: Necessary condition for 3-secies wave

Theorem (Hung-C, JDE 2016) Assume that d1 ≤ d2 , u and v
competes strongly, and there exists a type 4 wave. Then

r3 > min

{
c33
c13

r1,
c33
c23

r2,
d1c32
d2c12

r1,
d1c31
d2c21

r2

}

u (r1 − c11u− c12v − c13w)
v (r2 − c21u− c22v − c23w)
w (r3 − c31u− c32v − c33w)



Part 5. Conclusion
• Type 4 waves serve as a basic building block for complicated patterns.

One can use them to numerically construct spiral waves and new
dynamic patterns
• 3 species have more chance than 2 species to coexist.

It seems coexistence is easier to happen as a dynamical pattern rather
than a steady state.
• Under suitable conditions, even very strong competition alone can

support coexistence.
• Explanation for the existence/non-existence of exact solutions?
• How to prove the existence of spiral waves theoretically?



Thank you!


