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Liouville theorem

Let u(x) be an entire harmonic (Au = 0) function on R".

® Bounded (one-side), then u = constant

o If |u(z)| < C(1+ |z|)™, then u = harmonic polynomials of
order <m

Examples on R?,

u=1, rcosh =z, 1r’cos20 =z — >

r" cos(nf), r"sin(nb)
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Bernstein problem

Let z,,+1 = u(z) be an entire minimal hypersurface

_ Du n
dlv<m> =0 on R".

® |[f n < 8, then w must be a linear function
Bernstein, Fleming, De Giorgi, Almgren, J. Simons,
Bombieri-De Giorgi-Giusti (counter example when n = 8)

If 2,41 = u(z) is non-flat entire minimal, as A — oo

Tyl = A lu(x)

converges to non-flat area-minimizing cone K ¢ R"*!,

K2 c R3 is a minimal cone, then K must be flat.
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Liouville theorem for Monge-Ampere eq

Consider a convex solution to the equation

det D?u =1 on R”

R WD S
Example: v = 5|z|*, or in general

1
u(x):§xTAaz+b‘x+c

A: nxn positive matrix with det A = 1, b: vector, ¢: constant

Du=A = detD*u=1
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Celebrated Liouville theorem in MA equation and affine geometry,

Theorem (

There is no other solution except convex quadratic polynomials

In other words, the solutions are unique modulo affine transforms

® Jorgens n = 2, Calabi n <5, Pogorelov n > 2
® Cheng-Yau '86 analytic proof based on affine geometry

o Caffarelli-Y.Li '04 and Y.Li-S.Lu "19 perturbation of RHS
det D*u = f(x)

f =1 outside of compact set, f is Z™-periodic
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Main result

Theorem (C.-Choi-Kim '21)

Classify all possible solutions to
det D*u = (1 + |Dul?)? 2 on R2

for0<a<i.

e det D?v = (1+ ]a:\Q)%_Q by Legendre transform
v(p) =sup[p-z — u(z)]
x
e o= %: affine-critical and o < %: sub-affine-critical

® RHS and a come from a geometric context
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Gauss curvature flow

® Let ; be a 1-parameter family of convex hypersurfaces in R3.

> is a-Gauss Curvature Flow if the surface moves toward
inside with the speed K“. Here

K = Ay = Gaussian curvature at X € ;.

® |n other words,
2X =Kn

n = inward unit normal vector at X € X;

K ~ det D?u for graph x3 = u(x1, 2)
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A translating soliton is a self-similar solution which moves in
constant speed, namely

Yy =%0+tes forte (—o0,00).

In this caes, ¥ solves K* = (n, e3) and

det D*u = (1 + |Du|2)2_ﬁ
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Theorem ( '99 - “Fate of Rolling Stones”, n =2, a = 1)

Every convex closed surface shrinks to a point and becomes round.

° o= i, the flow converges to an ellipsoid

® Higher dimensions @ > n+_2: Guan-Ni, Andrews-Guan-Ni,

Brendle-K.Choi-Daskalopoulos
° o< %, (generic) flow becomes arbitrary elongated
and translating solitons are expected to appear

@ 90 < \ /\ﬁ

AN
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Translators to a-GCF a > 1/2

det D2u = A(1 + |Dul?)"2" "2« in R™! (speed A > 0).

Theorem (J.Urbas '98 '99)
Fora >1/2,

® Fvery translator is a graph on some
convex bounded domain 2 C R™.

® Conversely, for given such an 2 C R",
there is a unique translator which is a
complete graph on ().

® Speed A is given in terms of the area of 2 and a.
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Translators o < 1/2

o (lassification is completely unknown except o = %ﬁ
affine-critical case

® Rotationally symmetric solution is always entire

Jian-Wang '14 showed

U Fora<n%rlv

translators are always entire and
|2|% S u(z) < |z]® for some 1 < a <

® Fora< % oo-many non-rotationally symmetric translators
exist
Our work shows, for n =2 and o < 7#2 =1

2|75 S u(e) S o T
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Recall " result: upto translations and rotations,
ua(r) = 3(Az} + A~ 'a3) for some A > 0

solutions are 1-parameter family.

Theorem (CCK, n = 2, g <a< )

There is 1-parameter family of translators satisfying
ua(z) = Ca\:c|ﬁ + Alz|"* cos(20) + O(|z|">7°), z = (x1,22)

and there is no other translator (upto rotations and translations).

® Translators are asymptotically round
® (C and « depend only on «. Moreover, v — 2 as a — i

7 cos 20 — 12 cos 20 = 3 — 3
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Why does such a difference appear?
Let ug(z) be rotationally symmetric translator
det D?ug = (1 + |Dug|?)* 2.

The linearized equation L,,w = 0 has solutions (Jacobi fields)
w = 77 cos 20 and 77 sin 26.

Other Jacobi fields are w = rT—2a cos @, ri-2a sin @, 1 and so on.
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For a < %, we have more interesting phenomenon

® When a=1/9, w= =2 cos 36 is a Jacobi field and
asymptotically 3-fold solution bifurcated from there
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Theorem (CCK Unique self-similar blow-down)

As X\ — oo,
up(x) == )\_ﬁu()@) — mﬁg(e)

for some g(6). The level curve {|x|ﬁg(9) = 1} is a shrinking
soliton to —%--Gauss curvature flow (of curves) in R2.

-«

® u(x) is asymptotic to rﬁg(e) as |z] =r — o0

«
-«

® A closed curve I' C R? is shrinking soliton for
shortening flow if K Ta = AMX, —n)

-curve

o '03 classified shrinkers as in previous slide
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Level curves for a = i Vs a < i

e If a =1, u(z) = 27 Az = r?g(6) convex paraboloid.

{u(zx) = [} are homothetic ellipsoids (=shrinker)

o Ifa<i ulx) = P g(0) + O(r -2 )

{u(x) = l} converges to a shrinker (after rescaling) as I — oo
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Steps of proof

For given translator u(x), show the followings
1) |33|1/1_20‘ S u(:p) S |:L“1/1_20‘

1 1
® u)(x) =\ T2au(Ax) — |z|T=22 g(0) along subsequences
A — 00. Here g is unique upto rotations

© ¢ is actually unique (no rotation) and full convergence holds
1 1

@ convergence rate u(z) = ri-2ag(f) + O(ri=22"°), € > 0

@ u = uy, some yo € R¥. Here, {uy}ycpx is K-param. family

of translators (constructed in the existence part) satisfying the
asymptotic condition in previous step
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Step 1 and 2 use Daskalopoulos-Savin '08

1
- showed the homogeneous growth rate |z|T=2o (theory of MA eq)
and found a sort of monotonicity formula that is crucial in
selfsimilar blow-down

Step 3 uses techniques from Allard-Almgren '81
- uniqueness of tangent cones to minimal surface under some
integrability assumption

Step 5 uses a nonlinear Gram-Schmidt process is employed to read
off correct ‘coordinates’ yo € R by use of Merle-Zaag ODE
lemma
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To sketch step 5, assume the simplest case when u is
asymptotically round, i.e.

u(z) = erla] == (1 + of 2| 7%)).

1
u(@)—ci || 1722
1

Cl\$| I—2a

The relative error v(z) = solves

L(v) := r*vp + corv, + c3(v + vgg) = N(v)

with
Nw) < (Jv| +r|Dv| + T2’D2U’)2.

By elliptic regularity,

v + 7| Dv| 4+ r2|D*v| = O(r~%) as r — oo
making N (v) negligible compared to Lv.
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Lv = 0 has the kernel (Jacobi fields)

05 cos(j0), 7 cos(j6), 5 sin(j6), 17 sin(j6).
Roughly speaking,
{translators} <— {Jacobi fields with 3 € [—1-,0)}.

T 1-2a0

t<a<i 1 X X X
w<a<g 3 2 X X
=<a<qis| 5 2 4 X
E<a<E| 7 2 4 6

TABLE 1. the number of parameters modulo rigid motions
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Brief idea- nonlinear 1st order ODE system

The eq for v can be rewritten as (with s = Inr)

% [81}1)] - [—28353 31).99:| t [Jg/'] =L [87:1)] T [/?/] )
Eigenvectors of L are
L [ﬂ;scusliflejQ] = 57 [ﬁ;ﬁlz{ﬁe} :
Express
v 4 cos j0 sin j6
PRICED 0] Panif FRE-T01 Peorih

and investigate 1st order ODE system of {gpifj(s), @:j(s)}.
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{go(“fj(s), goij(s)} solves some ‘weakly’ coupled first order ODE
system since N is much smaller than (v, vs).

+
If =0, then gotfj(s) = apfj(O)eﬂj *. So we group eigenspaces
into three parts

+ + _ +
{85 > 0} unstable , {8;" = 0} neutral , {3; < 0} stable
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Theorem (Merle and Zaag ODE Lemma '98)
Let z(t), y(t), and z(t) be nonnegative functions such that

r+y+z—>0ast—

and there is cg > 0 s.t. for all ¢ > 0,

x' > cor — e(y + 2)
Y <e@+y+2)
2 < —coz +e(z+y)

for all large time t > T'(e).
Then, as t — oo, either y is dominant, z + z = o(y), or z is
dominant, x +y = o(z).

Liouville results for ancient MCFs and Ricci flows-
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Theorem (First leading coefficients) |

There are A; € R such that

v = A1ePES cos KO + AgePkS sin K + O(elk—99)

Since the eq is nonlinear, the next order asymptotic is not
dominated by a Jacobi field. However, the difference of two
solutions is dominated by a Jacobi field.

Theorem (Finding next coefficients) |

If vy —v1 = O(e7®) with 8% <~ < B, <0 some N, then

V2 — U1 = A1eﬂf+vs cos NO + A2651+v5 sin N6 + O(e(b’fv—e)S)

, 1
We iterate this and find v — vy, = o(r” 1-2a) = u = uy,.
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Further Problems:
To tackle higher dimension n = 3, we need

® the classification of compact shrinking surfaces to
sub-affine-critical GCF in R?
-Some existence was shown by B. Andrews

e the result of Daskalopoulous-Savin on R?

When n =2, a € (1/4,1/2),

® a € (1/4,1/3) = the solutions are entire, but would
generically have different growth rates in different axes.

® a € (1/3,1/2) = the solutions will not generically be entire
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