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Liouville theorem

Let u(x) be an entire harmonic (∆u = 0) function on Rn.

• Bounded (one-side), then u = constant

• If |u(x)| ≤ C(1 + |x|)m, then u = harmonic polynomials of
order ≤ m

Examples on R2,

u = 1, r cos θ = x, r2 cos 2θ = x2 − y2

rn cos(nθ), rn sin(nθ)
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Bernstein problem

Let xn+1 = u(x) be an entire minimal hypersurface

div

!
Du

(1 + |Du|2)1/2

"
= 0 on Rn.

• If n < 8, then u must be a linear function
Bernstein, Fleming, De Giorgi, Almgren, J. Simons,
Bombieri-De Giorgi-Giusti (counter example when n = 8)

Fleming ’62 n = 2

If xn+1 = u(x) is non-flat entire minimal, as λ → ∞

xn+1 = λ−1u(λx)

converges to non-flat area-minimizing cone K ⊂ Rn+1.

K2 ⊂ R3 is a minimal cone, then K must be flat.
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Liouville theorem for Monge-Ampere eq

Consider a convex solution to the equation

detD2u = 1 on Rn

Example: u = 1
2 |x|

2, or in general

u(x) =
1

2
xTAx+ b · x+ c

A: nxn positive matrix with detA = 1, b: vector, c: constant

D2u = A =⇒ detD2u = 1

Beomjun Choi Gauss curvature flow



Celebrated Liouville theorem in MA equation and affine geometry,

Theorem (Jörgens ’54, Calabi ’58, Pogorelov ’72)

There is no other solution except convex quadratic polynomials

In other words, the solutions are unique modulo affine transforms

• Jörgens n = 2, Calabi n ≤ 5, Pogorelov n ≥ 2

• Cheng-Yau ’86 analytic proof based on affine geometry

• Caffarelli-Y.Li ’04 and Y.Li-S.Lu ’19 perturbation of RHS

detD2u = f(x)

f = 1 outside of compact set, f is Zn-periodic
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Main result

Theorem (C.-Choi-Kim ’21)

Classify all possible solutions to

detD2u = (1 + |Du|2)2−
1
2α on R2

for 0 < α < 1
4 .

• detD2v = (1 + |x|2) 1
2α

−2 by Legendre transform

v(p) = sup
x

[ p · x− u(x)]

• α = 1
4 : affine-critical and α < 1

4 : sub-affine-critical

• RHS and α come from a geometric context
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Gauss curvature flow

• Let Σt be a 1-parameter family of convex hypersurfaces in R3.

Σt is α-Gauss Curvature Flow if the surface moves toward
inside with the speed Kα. Here

K = λ1λ2 = Gaussian curvature at X ∈ Σt.

• In other words,
∂
∂tX = Kαn

n = inward unit normal vector at X ∈ Σt

K ≈ detD2u for graph x3 = u(x1, x2)
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A translating soliton is a self-similar solution which moves in
constant speed, namely

Σt = Σ0 + t e3 for t ∈ (−∞,∞).

In this caes, Σ0 solves Kα = 〈n, e3〉 and

detD2u = (1 + |Du|2)2−
1
2α
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Theorem (Andrews ’99 - “Fate of Rolling Stones”, n = 2, α = 1)

Every convex closed surface shrinks to a point and becomes round.

• α = 1
4 , the flow converges to an ellipsoid

• Higher dimensions α > 1
n+2 : Guan-Ni, Andrews-Guan-Ni,

Brendle-K.Choi-Daskalopoulos

• α < 1
4 , (generic) flow becomes arbitrary elongated

and translating solitons are expected to appear
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Translators to α-GCF α > 1/2

detD2u = λ(1 + |Du|2)
n+2
2

− 1
2α in Rn+1 (speed λ > 0).

Theorem (J.Urbas ’98 ’99)

For α > 1/2,

• Every translator is a graph on some
convex bounded domain Ω ⊂ Rn.

• Conversely, for given such an Ω ⊂ Rn,
there is a unique translator which is a
complete graph on Ω.

• Speed λ is given in terms of the area of Ω and α.
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Translators α < 1/2

• Classification is completely unknown except α = 1
n+2 ,

affine-critical case

• Rotationally symmetric solution is always entire

Jian-Wang ’14 showed

• For α < 1
n+1 , translators are always entire and

|x|α ≲ u(x) ≲ |x|β for some 1 < α < β

• For α < 1
2 , ∞-many non-rotationally symmetric translators

exist

Our work shows, for n = 2 and α < 1
n+2 = 1

4 ,

|x|
1

1−2α ≲ u(x) ≲ |x|
1

1−2α
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Recall Jörgens’ result: upto translations and rotations,

uA(x) =
1
2(Ax

2
1 +A−1x22) for some A > 0

solutions are 1-parameter family.

Theorem (CCK, n = 2, 1
9 ≤ α < 1

4)

There is 1-parameter family of translators satisfying

uA(x) = Cα|x|
1

1−2α +A|x|γα cos(2θ) +O(|x|γα−ε), x = (x1, x2)

and there is no other translator (upto rotations and translations).

• Translators are asymptotically round

• C and γ depend only on α. Moreover, γ → 2 as α → 1
4

rγ cos 2θ → r2 cos 2θ = x21 − x22
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Why does such a difference appear?

Let u0(x) be rotationally symmetric translator

detD2u0 = (1 + |Du0|2)2−
1
2α .

The linearized equation Lu0w = 0 has solutions (Jacobi fields)
w = rβ cos 2θ and rβ sin 2θ.

• If α = 1
4 , β = 2

• If α < 1
4 , β < 1

1−2α

Other Jacobi fields are w = r
2α

1−2α cos θ, r
2α

1−2α sin θ, 1 and so on.
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For α < 1
9 , we have more interesting phenomenon

1
16

≤ α < 1
9

1
25

≤ α < 1
16

or

or or

• When α = 1/9, w = r
1

1−2α cos 3θ is a Jacobi field and
asymptotically 3-fold solution bifurcated from there
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Theorem (CCK Unique self-similar blow-down)

As λ → ∞,

uλ(x) := λ− 1
1−2αu(λx) → |x|

1
1−2α g(θ)

for some g(θ). The level curve {|x|
1

1−2α g(θ) = 1} is a shrinking
soliton to α

1−α -Gauss curvature flow (of curves) in R2.

• u(x) is asymptotic to r
1

1−2α g(θ) as |x| = r → ∞

• A closed curve Γ ⊂ R2 is shrinking soliton for α
1−α -curve

shortening flow if K
α

1−α = λ〈X,−n〉

• B. Andrews ’03 classified shrinkers as in previous slide
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Level curves for α = 1
4 vs α < 1

4

• If α = 1
4 , u(x) = xTAx = r2g(θ) convex paraboloid.

{u(x) = l} are homothetic ellipsoids (=shrinker)

• If α < 1
4 , u(x) = r

1
1−2α g(θ) +O(r

1
1−2α

−ε)

{u(x) = l} converges to a shrinker (after rescaling) as l → ∞
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Steps of proof

For given translator u(x), show the followings

1 |x|1/1−2α ≲ u(x) ≲ |x|1/1−2α

2 uλ(x) := λ− 1
1−2αu(λx) → |x|

1
1−2α g(θ) along subsequences

λ → ∞. Here g is unique upto rotations

3 g is actually unique (no rotation) and full convergence holds

4 convergence rate u(x) = r
1

1−2α g(θ) +O(r
1

1−2α
−ε), ε > 0

5 u = uy0 some y0 ∈ RK . Here, {uy}y∈RK is K-param. family
of translators (constructed in the existence part) satisfying the
asymptotic condition in previous step
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Step 1 and 2 use Daskalopoulos-Savin ’08

- showed the homogeneous growth rate |x|
1

1−2α (theory of MA eq)
and found a sort of monotonicity formula that is crucial in
selfsimilar blow-down

Step 3 uses techniques from Allard-Almgren ’81
- uniqueness of tangent cones to minimal surface under some
integrability assumption

Step 5 uses a nonlinear Gram-Schmidt process is employed to read
off correct ‘coordinates’ y0 ∈ RK by use of Merle-Zaag ODE
lemma
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To sketch step 5, assume the simplest case when u is
asymptotically round, i.e.

u(x) = c1|x|
1

1−2α (1 + o(|x|−δ)).

The relative error v(x) = u(x)−c1|x|
1

1−2α

c1|x|
1

1−2α
solves

L(v) := r2vrr + c2rvr + c3(v + vθθ) = N (v)

with
N (v) ≲ (|v|+ r|Dv|+ r2|D2v|)2.

By elliptic regularity,

|v|+ r|Dv|+ r2|D2v| = O(r−δ) as r → ∞
making N (v) negligible compared to Lv.
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Lv = 0 has the kernel (Jacobi fields)

rβ
+
j cos(jθ), rβ

−
j cos(jθ), rβ

+
j sin(jθ), rβ

−
j sin(jθ).

Roughly speaking,

{translators} ←→ {Jacobi fields with β ∈ [− 1
1−2α , 0)}.
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Brief idea- nonlinear 1st order ODE system

The eq for v can be rewritten as (with s = ln r)

∂

∂s

#
v
∂sv

$
=

#
∂sv

−2∂sv − 3vθθ

$
+

#
0
N

$
= L

#
v
∂sv

$
+

#
0
N

$
.

Eigenvectors of L are

L

#
sin jθ

β±
j sin jθ

$
= β±

j

#
sin jθ

β±
j sin jθ

$
.

Express

#
v
∂sv

$
(s) =

%
ϕ±
c,j(s)

#
cos jθ

β±
j cos jθ

$
+ ϕ±

s,j(s)

#
sin jθ

β±
j sin jθ

$

and investigate 1st order ODE system of {ϕ±
c,j(s),ϕ

±
s,j(s)}.
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{ϕ±
c,j(s),ϕ

±
s,j(s)} solves some ‘weakly’ coupled first order ODE

system since N is much smaller than (v, vs).

If N ≡ 0, then ϕ±
c,j(s) = ϕ±

c,j(0)e
β±
j s. So we group eigenspaces

into three parts

{β±
j > 0} unstable , {β±

j = 0} neutral , {β±
j < 0} stable
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Theorem (Merle and Zaag ODE Lemma ’98)

Let x(t), y(t), and z(t) be nonnegative functions such that

x+ y + z → 0 as t → ∞

and there is c0 > 0 s.t. for all ε > 0,

x′ ≥ c0x− ε(y + z)

|y′| ≤ ε(x+ y + z)

z′ ≤ −c0z + ε(x+ y)

for all large time t > T (ε).
Then, as t → ∞, either y is dominant, x+ z = o(y), or z is
dominant, x+ y = o(z).

Liouville results for ancient MCFs and Ricci flows- Angenent,
Daskalopoulos, Sesum, K.Choi, Brendle, Haslhofer, Hershkovits,
Naff...
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Theorem (First leading coefficients)

There are Ai ∈ R such that

v = A1e
β+
Ks cosKθ +A2e

β+
Ks sinKθ +O(e(β

+
K−ε)s)

Since the eq is nonlinear, the next order asymptotic is not
dominated by a Jacobi field. However, the difference of two
solutions is dominated by a Jacobi field.

Theorem (Finding next coefficients)

If v2 − v1 = O(eγs) with β+
N ≤ γ < β+

N+1 < 0 some N , then

v2 − v1 = A1e
β+
Ns cosNθ +A2e

β+
Ns sinNθ +O(e(β

+
N−ε)s)

We iterate this and find v − vy0 = o(r−
1

1−2α ) ⇒ u ≡ uy0 .
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Further Problems:
To tackle higher dimension n = 3, we need

• the classification of compact shrinking surfaces to
sub-affine-critical GCF in R3

-Some existence was shown by B. Andrews

• the result of Daskalopoulous-Savin on R3

When n = 2, α ∈ (1/4, 1/2),

• α ∈ (1/4, 1/3) ⇒ the solutions are entire, but would
generically have different growth rates in different axes.

• α ∈ (1/3, 1/2) ⇒ the solutions will not generically be entire
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