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1. PDEs with non-decreasing
constraints



Non-decreasing constraints

In this talk, “non-decreasing constraints on evolution” mean

u(x,t) > u(x,s) if t> s,

or equivalently,
Oiu(x,t) > 0.

Background: Irreversible Phase-field models (e.qg., for brittle fracture)

Let uw = u(x,t) denote a displacement field and z = z(x, t) a phase field,
which intuitively means

)
1 if the material is cracked at (x,t),
z(x,t) = <

0 if the material is not cracked at (x, t).

Then t — z(x, 1) is supposed to be non-decreasing, unlike ¢ — u(x,t).
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Phase-field model for brittle fracture

The phase-field model reads,
0 = div (as(z)Vu) in 2 X R,

< / 2 .
Oz = (eAz — — —o_(z)|Vu] ) in 2 X R,
€ +
which is an irreversible quasi-static evolution, I.e.,
0= 0uF.(u,2), Oz =(—8.F.(u32)) ,
_|_
of the free energy F.(u, z) (= Ambrosio-Tortorelli reqularization of the
Francfort-Marigo energy) given by

1 € 1
Fe(u,z) = Q/Qae(z)|Vu|2dw 4 /ﬂ (§|Vz|2 + 2—€z2) dzx.

[Frémond-Nedjar '96], [Bonetti-Schimperna '04], [Mielke-Roubicek '08],

[Knees-Rossi-Zanini '13-], [Takaishi-Kimura '09,'11],...,[|A-Schimperna '21]
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Gradient flows with non-decreasing constraints

Let us focus on the gradient flow structure with non-decreasing constraints,
roughly speaking,

Byu(t) = (— 8J(u(t)))+ > 0

for some (possibly non-convex) functional J : X — R, say X = L?(Q).
Equivalently, it can be rewritten as

u(t) = —0J(u(t)) — u,
where v can be characterized as

€ g 1oy (Byu) and  p = —( _ aJ(u(t)))_.

Stabilization <« Constraint
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Aim of this talk

Address ourselves onto simpler PDEs with non-decreasing constraints and
discuss asymptotic behavior of solutions.

In particular, we shall discuss traveling wave dynamics for the 1D Allen-Cahn
equation with non-decreasing constraints,

(%) Uy = (um — W,(u))+ in R x R,.

cf.) [A-Efendiev '19] Cauchy-Dirichlet problem in bounded domains of R*Y
e well-posedness, (partial) smoothing effect
e energy-dissipation estimates, absorbing set, global attractor
e reformulation of (x) as an obstacle problem

e convergence to equilibria as t — +oo and steady-state equation
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2. Traveling wave dynamics



Allen-Cahn equation in R

Let us recall the Cauchy problem for the classical Allen-Cahn equation,

(AC) <(’U,t = Upy — f(’l,l,) in R X R_|_,

Ult=0 = Ug in R,

\

where f satisfies

[ £(az) = F(a0) =0, F(az) >0,
\f >0 in(a_,a9), f<O0 in(ag,ay),

forsome a_ < ag < ay, i.e., f = W' with a double-well potential W'
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Allen-Cahn equation in R

Let us recall the Cauchy problem for the classical Allen-Cahn equation,

(AC) <(’U,t = Upy — f(u) in R X R+,

’U,|t:0 = Ug in R.

\

& phase separation model (e.g., binary alloy),

& ° gradient flow of the free energy

1 2
J(u) = 54|8wu(w)| da:—l—/RW(u(:B))da:
where W’ = f. Namely,
(AC) < w, = —8J(u) in LX(R), t> 0.

Hence ¢t — J(u(t)) is non-increasing.
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Traveling wave solutions for (AC)

The traveling wave solution w(x,t) = ¢(x — ct) is characterized
by a profile function ¢ and a velocity constant c satisfying

—cd' = ¢" — f(¢) iR,

(&) — a4 as © — oo

and 1. 05 0 0s ’
cqy=0 if W(a_) =W(a,), ao
>0 if W(a_) < W(ay). ng(x)
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Traveling wave solutions for (AC)

[Fife-McLeod '72]
e Existence and “uniqueness’ of TWs
Phase-plain analysis

e Exponential stability of TWs: if

uo(x) € [a—,a4], limsupuo(z) < ao, lir_e_&nf uo () > ao,
T— — 00 L oo

then there exist constants x¢ € R, K, x > 0 such that
(-5 t) — @(- — et — o) || poo(r) < Ke " forallt > 0.

Schauder estimate, precompactness of {u(- + ct,t): t > 0},
sub / supersolution method

[X. Chen "92] Non-local reaction, Sub / supersolution method only
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Constrained Allen-Cahn equation

Now, we shall consider

Uy = (um — f(u))+ in R x R,

Ult=0 = Ug in R,

(AC)..

where f satisfies

fax) = f(ag) =0, f(az) >0,
f>0in(a_,a9), f <O in(ag,ay)

for some a_ < a¢p < a4 and

(s)+ := max{s,0} > 0.
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Constrained Allen-Cahn equation

Now, we shall consider

Uy = (um — f(u)) in R x R,
—_—
(AC)+ = — 8J(U)

’U,|t:() = Ug in R,

Then t — J(u(t)) is still non-increasing.

Moreover, (AC)_ is equivalent to
® Ut = — BJ(’LL) — MKy, M E 8I[O,—|—oo) (ut)a ult:O = Uo,

e min{u — ug , Uy — Uge + f(u)} =0, u|i—g = ug

& up=—0J(u) —pn, p € OMyy(z),00)(U), Uli=0 = uo.
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Traveling wave dynamics for (AC)_

We shall discuss

e existence and uniqueness of traveling wave solutions,

e convergence to a traveling wave solution.

In what follows, we may restrict ourselves to a balanced potential:

a4 —

1
Fl, a9 =0, W(u) = Z(’u,2 —1)2,

for which the TW of (AC) fulfills

c=0 and ¢(+oo) = +£1.
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3. Existence and uniqueness
of traveling waves



Balanced double-well potential

0.2 ‘ .
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Balanced double-well potential W (u)
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Heuristic construction

Substitute u(x,t) = ¢(x — ct) to (AC)_ . Then a profile equation reads,

—c’ = (¢" — f(0)) -
How can we solve it ?

Instead, we shall derive an alternative profile equations...

13/46



Heuristic construction

Suppose that u(—oco) = a € (—1,0), which is a steady-state for (AC)_ .
(i) Due to the non-decreasing constraint u; > 0,
u(x,t) > a.

Then the region [u < «] on the graph of W (u) is prohibited.

(ii) Analogously to the reformulation, u may solve the obstacle problem,
U — Uge + F(u) + Ol 100)(u) 20 inR X R.
N——
=W/ (u)
Roughly speaking,
W' (u) + 8Ija,100) (1) = (W + Ija,100)) ().
N——

truncation !
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Heuristic construction

0.2 -
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Truncated balanced double-well potential W (u)
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Profile equation for traveling waves

Let « € (—1,0) and substitute w = ¢(x — ct). Then

(1) =t ="+ W(@) + la)(#) 30 inR

= 0(W+I[n,00)) (¢)

Is derived along with
$p(—oc0) =a and ¢(+o0)=1 and ¢ >0

as a profile equation.

Indeed, let ¢ be a solution of () for some ¢ = c,,.
Then u(x,t) = ¢o(x — cat) solves (AC)

and c, < 0 if o« £ —1.
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Existence of traveling wave solutions
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Existence of traveling wave solutions

~ Theorem 1 (Traveling wave solutions [A-K-N])

For each a € (—1,0), (AC)_ has a solution u(x,t) = ¢ (x — cut)
for some profile function ¢, (£) and a velocity constant c,, satisfying

glig_noo ba(§) = 1, €E£Iloo da(§) = a.

Moreover, it holds that
(i) —cd! — ¢” + f(da) + Ijnoo)(dn) DO inR,

& min{¢a — o, —co@, — P + f(qba)} =0 in R,
(i) ¢ € W?=(R), ¢! € L*(R),

(i) a<pa<1l 0< ¢, <4oo inR, —oo< c, <0,
\

~
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Existence of traveling wave solutions

~ Theorem 1 (Traveling wave solutions [A-K-N] (contd.)) ——
There exists sg € R such that

¢a(3) — & on (_00780]7 ¢a(8) > . on (807 OO)
Furthermore, —co @) — ¢! 4+ (o) = 0 in (sp, +00), and hence,

¢ (so —0) =0 and ¢;(so+0) = f(a) > 0,

which implies ¢ € C?*(R).
\_ J

In what follows, we set s; = 0 by translation. Hence

Go = a On (—00,0];, ¢o > a on (0,00).
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Existence of traveling wave solutions
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Uniqueness of profile and velocity

~ Theorem 2 (Uniqueness of traveling waves [A-K-N]) ~
Concerning traveling wave solutions discussed in Theorem 1, it holds that

(i) the velocity c,, is unique for each «,

(ii) the profile function ¢, is unique (up to translation) for each c.

\_ J
1
Ga(x — Cat)
0
a J
Cal
—1
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4. Convergence to
traveling waves



Question

-~ Question ~

Can we also prove the (exponential) convergence of solutions for (AC)

to traveling waves as in the classical Allen-Cahn equation ?
N\ J

We cannot expect stability of traveling wave solutions.

~ Proposition 3 (Instability of traveling waves [A-K-N]) ~

For each o € (a_, ag), the traveling wave solution ¢, (x — c,t) of

(AC)__ is unstable in L>°(R).
. J

Hence the basin of attraction of the traveling wave solution for (AC)__ is
smaller than those for (AC).
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Hypotheses for initial data

For o € (a_, aq), we assume (with a- = £1 and ag = 0):

(

uo € H? (R), llminf ug(x) > aop,

(H)_ q(a_ < mf uo(az) < sup ug(x) < a.,
xR

(Up = on (—o0,&1] for some &; € R.

A+

3 I~

@ :\ /Uo(flf)

a_

Then one can define

r(t) :=sup{r € R: u(x,t) =« forall x <r} €R for t > 0. /16



Main result

~ Theorem 4 (Exponential convergence to a TW [A-K-N]) ——

Let « € (a_,ag) be such that f'(«) > 0 and assume that wu, satisfies
(H),. Let u = u(x,t) be the L7  solution to (AC)_ for the initial
datum wug. Then there exist £ € R and K, k > 0 such that

|u(-st) — Pal- — cat — To) | poomy < Ke " forall t > 0.

Set r(t) := sup{r > 0: u(-,t) = o on (—oo,r|}. Then

17(t) — cat — x| < e7 2% as t — +oo.
\_ J
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Supersolutions of (AC)_ cannot decrease !

We note that
+
implies
U(x,t) cannot decrease in time !

Hence the sub- and supersolution method does not work well for (AC)
(cf. Fife-McLeod & Chen).

=> Our proof consists of “4 phases”.
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Rough outline of proof

Phases 1 & 2 Reduction to a simplified system

- Reduction to a constant obstacle problem ~

There exists t; > 0 such that, for all t > ¢4,

Hence (AC), is reduced to

\_

u(x,t) = ug(x) ifandonlyif wu(x,t) = a.

(AC), min{u — o, ut — Uge + f(u)} =0 inR.

/

Phase 3 Quasi-convergence of the orbit O = {u( -+ + cot,t): t > t,}

to the limit ¢, (+ — x) unif. in R for some o € R

Energy method

Phase 4 Exponential convergence of w(+,t) to ¢po (- — cot — x0)

uniformly in R as ¢ — +oo | Sub- and supersolution method

26,46



Initial Phase

& Initial Phase

~ Claim ~
Jt, > 0 ; irellf&u(w,tl) > a_.

\ J

Let u,. be the unique solution to (AC) with the same datum wy. Moreover,

Uy = (um — f(u))Jr > Uy — f(u) INR X R,.

By comparison principle,

u(x,t) > uge(xy,t) = Poc(x) as t —

+00,

where ¢, 1S a TW with ¢ = 0 connecting a+ at * = -

— OQ.
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Initial Phase

¢b(17_'50)

Let u,.(x, t) be the solution to (AC) with uy.(x,0) = ug(x).
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Initial Phase

a+
u,(X,t)
=
Q
a-

Let uye(x, t) be the solution to (AC) with w,.(x,0) = ug(x).
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Initial Phase

a+
¢ac UaC(X,t)
y /_\
8
a-

Then u,.(x, t) converges to a layer solution ¢,.(x) (with ¢ = 0).
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Initial Phase

a+

q u(x,t
__ /

)

The solution u(x, t) of (AC)_ is a supersolution to (AC).
Hence u(x,t) > uqc(x, t).
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Second Phase

& Second Phase

~Lemma 5 (Reduction to a constant obstacle problem)

There exists to > t; such that, for all ¢ > ¢,

u(x,t) = ug(x) < u(x,t)=a.
\_

We employ a subsolution to (AC)_ given by
U,(x,t) := ¢, (x —c,t —0d(1 —e ") —h™) — e "
forsome h— € R, 8,0,0 > 0 and v € (a_, ag) satisfying

a_ <~v—0K< igﬂgu(w’tl)°

Then we assure that ¢, < 0.
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Second Phase

—_—

a+

;icg]fku(m’tl) > a_
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Second Phase

a+

u(x,t+s)
Cp< O
ao
U, (X,S)
a e
a-

Eventually, u(z,t + s) > Ug - (x,s5) > o« = ug(x) forall z > &;.
Therefore w(x.,t) = ug(x) < u(x,t) = a.
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Second Phase

Thanks to the reformulation, we assure that
(AC);. & (AC), min{u — o, ut — Uge + f(u)} =0 inR

for all t > t,.
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Third Phase

& Third Phase

~ Lemma 6 (Quasi-convergence of u(- — c,t,t)) ~

There exist a sequence t,, — +o00 and £ € R such that

”U(',tn) — ¢a( — Caln €)||L00(R) — 0.
N J

We prove the precompactness of {u(- — cot,t): t >t} in H! (R) by
developing local energy estimates for (AC)_ and identify the limit of the
orbit.

Thereby, for any 6 > 0 (small), one can take ns € N such that
Da(x — Ccotn;) — 0 < u(x,t,,) < Pa(x — catn,) + 0

for any x € R (after a suitable translation).
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Third Phase

Set
v(y,t) ;= u(y + cat,t) —asr € [ —ay,0], yeR,, t>t,.
Then (AC)_, implies
Ov — 631) +n4+ f(v+ay) =coOyv, 1€ Oy o0)(v+ay)
in Ry X Ry. We can assume WLOG (by translation) that
v(0,t) =a—ay, OJ,v(0,t) =0, v(y,0) = u(y,O0).

A key step is to establish local-energy estimates for v(y, t).

Step 1| Based on [A-Efendiev '19], we can prove that

sup [ n(,O)Ppda < [ (0200 — f(u))-FPpde Vp € CZ(R)

£>0
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Third Phase

Step 2 | (Caccioppoli type estimate) Let (r € C'°(R) be such that

: : 2
CR =1 In [O, R], CR =0 mn [ZR, —|—OO), ||C;2||L°°(R_|_) S E.

Test (AC)_, by e *Me“¥v(Z. Then

1 + o0 1 t —+ oo
5@‘”/ e“Yy (-, t)*¢E dy + 5/ e 2T (/ e“¥|9,v|*Ch dy) dr
0 0 0

2 2

where we used the fact that f”/ > —X and vnp > 0. Let R — 400. Then

t —+ o0
/ e 2T (/ e?|0,v|’ dy) dr < C.
0 0
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Third Phase

Step 3| (Weighted energy estimate for 9,v) Test (AC)_ by e““¥9,v. Then

/ e“¥|g|? dy + — (— / e“¥|9,v|* dy + / e“Yh(v) dy) = 0.
0 dt\2 Jo 0 .

— E(v(-,t))

where h(v) = f(v +ay) > 0, since nd,v = 0 by n € 8l 1 o0)(Dsur).
Integrate it over (7g,t) with 79 > 0. It then follows from | Step 1 | that

t oo
|| emowiy. 1) dydr + E(o(, 1) < B(o(-m)) VE 2
70 Y O

Step 4| (Quasi-convergence local in space) One can take ¢,, — oo such that

Ov(-,t,) — 0 strongly in L?(R;e?dy),

38/46



Third Phase

(-, tn) = Moo Weakly in L?(0, R),
v(-,t,) — 1  weakly in H*(0, R),
strongly in C*([0, R)])

for some ¢ € H?

loc

(Ry) and any R > 0. Set

if 4y >0,
5(y) = {¢(y) +ay ' Yy >
Q if y <0,

which then solves

_¢,, + f(¢) + I[a,OO) (¢) > Ca¢, in Rv ¢(0) = «,

Claim: Jh; € R such that ¢(x) = ¢po(x — hy) Vx € R.

¢'(0) = 0.
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Third Phase

Thus there exists a sequence t,, — +oo such that

sup |u(y + catnstn) — ¢a(y — h1)| = 0 for R > 0.
y<R

Step 5| (Quasi-convergence global in space)

Recall U, and ¢, and use comparison argument to

|u(y‘|‘catn7 tn)_(ba (y_h1)| < a-i-_min{u(y"'(:atna tn)a Do (y_hl)}°
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Final Phase

é Final Phase  Modifying the argument in [X. Chen '92], we shall prove
exponential convergence of w (-, t) to ¢, (- — cot) over R as t — 400
(without taking any subsequence). Set

wi(wv t) - = Cba(w — Ccot T 0‘5(1 — e_ﬁt) — hi) —- Se Pt

for h* € R, § € (0,80) and 3,0 > 0. Then w* turns out to be a super-

and a subsolution to (AC)_, provided dy, 3, o are small enough.

~ Lemma 7 (Enclosing)

Set h™ = 0 and assume ¢, (- —h™) — 0 < u(-,0) < @Pu(+) +dinR.
If 6 € (0,dp) and h— > 0 are small enough, one can take £ € (0, 1)
and ¢ > 1 such that

Pa(x—cat—c(h™ —0)) —cd < u(w,t) < da(x—cat+ed)+c0.

-

~

J
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Final Phase

W_

AlT

(AC)

By comparison principle, w=(z,t) < u(x,t) < wt(x,t).
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Final Phase

W_

(AC)

Set W+ := 4+ (w* — u) > 0. Then

IW=E — W= > F (f(wF) — f(u)) > —MW=.

By strong maximum principle, one has W+ > 3¢y > 0or W~ > ¢y > 0.
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Final Phase

(AC)

On the intermediate region, W > ¢, > 0 implies
u(z,t) < go(x — cat +06(1 — e 7)) —A) + e

for some A > 0 (< improvement !).
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Final Phase

e
/L

<<€ , > <€ >
P ¢’ small
small(?)
1‘674"

Tl -

If ¢! << 1, one can then enclose u(x, t) with smaller error:

Do — cat) = Po(x — cat —A) — A ¢ (x — cut)

On the left region, 0 < 79 < h™ should be small enough.
45/46



Final remark

For sufficiently reqular solutions, one can derive a motion equation for the
free boundary r(¢) as follows:

O3u(r(t),t)
f(a)

" 4 for £ > 0
—(t) = — or :
dt

cf.) Stefan problem

d
d_:(t) = —pdyu(r(t),t) for t >0

[Du-Lin’10][Du-Guo’11,'12][Du-Lou-Zhou’15][Du-Matsuzawa-Zhou’15|[Kaneko-
Yamada'l1l,'18|[Kaneko-Matsuzawa’'15,'18][Kaneko-Matsuzawa-Yamada’'20]...

cf.) The solution u(x,t) turns out to satisfy
u(r(t),t) = a, Oyu(r(t),t) =0, 2u(r(t)+0,t) = f(a)

for any t > 0.
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