THE VANISHING DISCOUNT PROBLEM FOR
SYSTEMS OF HAMILTON-JACOBI EQUATIONS

Hitoshi Ishii

Tsuda University
(Waseda University)

Asia-Pacific Analysis and PDE seminar. May 18, 2020



Vanishing discount problem

Convex, coercive HJ equations

Ergodic problem

An approach to Theorem 3

Systems of HJ equations

Appendix



VANISHING DISCOUNT PROBLEM
Scalar Case:  We consider the Hamilton-Jacobi equation

(Px) Av(x) + H(xz, Dv(z)) =0 in T".

Here

v = v the unknown function on T™,
Dv = ('U:clv "'7'0:811)7
A > 0 a given constant, discount factor,

H a given function of (z,p) = (x, Dv(x)).

Problem: asymptotic behavior of v* as A — 0.
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CONVEX, COERCIVE HJ EQUATIONS
Hypotheses:

(HO) Continuity: H € C(T™ x R™).
(H1) H is convex,
p — H(x,p) is convex.

(H2) H is coercive,

lim min H(x,p) = oco.
|p|—o0 z€T™

Property of H:
H(x,p) > é|lp| —C (36 > 0, 3C > 0).

Example: H(z,p) = |p|™ — f(z), m > 1, f € C(T").



Theorem 1 For each A > 0 problem (Py) has a unique
solution v>. Furthermore,

(AvM)aso is uniformly bounded,

(v )a>0 s equi-Lipschitz continuous.

e If Co > |H(x,0)|, then
A(Co/A) + H(2,0) >0,  A(—Co/) + H(x,0) < 0,

and, by comparison, —Co/A < v*(x) < Co/.
e Since H(x,p) > d|p| — C, we have

8| Do ()| < C + Ao |oo-
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Notation. Lagrangian of H:

L(:L', E) = pSéIIRgl[g P — H(Q’J,p)].

Properties: L is convex and lower semicontinuous on T™ x R™.

L(z,§) > —H(x,0),

L(z,&) > Al¢| — H(z, AL/[£])
> A|¢| — max H(z,p) VA > 0,
lp|<A

L(x,¢&) < sgp(lﬁllpl —d|p|+C) =C V¢ € Bs.

Recall here that H(z,p) > d|p| — C.
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ERGODIC PROBLEM
Formal expansion of the solution of (Py):

oMx) = ag()A" + ar(x) + as(e) A+ -+ .

Plug this into (Px):
ao(x) + a1 () + az(x)A% + - -

+ H(x, Dag(x)A~! 4+ Da;(x) + Daz(x)X + - --

We deduce that
Dag(x) =0 ie. ao(x) = ap ( constant ),
ao + H(x,Da1(x)) = 0.

The ergodic problem or additive eigenvalue problem:

)

=~ 0.
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The problem of finding a constant ¢ € R and a function
u € C(T") satisfying
(E) H(xz,Du(x)) =c inT™.

A classical result:

Theorem 2 (Lions-Papanicolaou-Varadhan, 1987)

Under (HO), (H2), there exists a solution (¢, u) € R x C(T™)
of (E). Moreover, the constant ¢ is unique.

e The constant c is called the critical value, additive eigenvalue, or
ergodic constant.
Their proof is to show that for some (c,u) € R x C(T"),

—XvMx) — ¢ uniformly on T,
v*x) + A7c¢ — wu(x) uniformly on T

along a subsequence ,



Main question:  does the whole family {v* + A~ 1c}aso
converges to a function as A — 047

e The ergodic problem (E) has multiple solutions. If w is a solution

of (E), then u + const is a solution. Consider the case
Du-(Du— D) =0 in T", withy € C*(T™).
We have many solutions:

u = Cq, u =1 + Cs, u = min{C1, ¢ + C2}.
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e Ergodic problem (E) arises in the ergodic optimal control, the

homogenization of HJ equations, and the large-time behavior of

solutions of evolutionary HJ equations.
A decisive result on the main question:

Theorem 3 (Davini-Fathi-lturriaga-Zavidovique, 2016)

Assume (HO)—(H2). Let ¢ be the critical value. Then, for
some function v® € C(T"), as A — 0+,

vMx) + A7 = %x) in C(TM).

e If H is not convex, the convergence of the whole family does
not hold in general. A counterexample by B. Ziliotto (2019).



Related work:

1) A. Davini, A. Fathi, R. lturriaga, M. Zavidovique,
Coercive, convex HJ equation on T™ (closed manifold).

2) E. S. Al-Aidarous, E. O. Alzahrani, HI, A. M. M. Younas,
Coercive, convex HJ equation on a bounded domain with the
Neumann type BC.

3) H. Mitake, H. V. Tran

Viscous HJ equation on T™, with coercive and convex
Hamiltonian. (2nd-order degenerate elliptic PDEs.)

4) D. Gomes, H. Mitake, H. V. Tran

Coercive, quasi-convex HJ equation on T™.

5) HI, H. Mitake, H. V. Tran,

2nd-order fully nonlinear, convex, degenerate elliptic PDEs on T™
or on a bounded domain with BC.

6) B. Ziliotto,

A counterexample, with non-convex Hamiltonian.

e Use of Mather measures.



AN APPROACH TO THEOREM 3

We review the proof of Theorem 3 (Davini et al.).

P = P(T™ x R™) all Borel probability measures on T™ x R™.
P1 = P1(T™ x R™) all p € P such that

woleh = [ lelu(dede) < oo.
T xR™
(the function (x, &) — |€| is denoted by |£])
Fix (z,A) € T™ x [0, 00).
€(z,A) (closed measures)
i={p € P1 | Mp(2) = (m, & - DY + Ap) Voo € C'(T™)}.
Note that

Nu(@) + H (@, Du(@)) = sup(u(@) +€- Du(z) ~ L(@,€)).
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When A = 0, the defining condition reads
0= (u,&- DY) Vo € CH(T").

So, we write €(0) for &€(z,0).

Theorem 4 Assume (H0)—(H2). If X > 0, then

A (z) = mi L).
v™(2) uerg(lgA)(u, )

e Any minimizer p of the optimization problem above is called a
discounted Mather measure. ~ Mt(z, A) = MN(z, A, L).

Theorem 5 Assume (H0)—(H2). Let ¢ be the critical

value. Then . I
—c = min .
ue¢(0)<“’ )
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e Any minimizer p of the optimization problem

i L.
20 4 )

is called a Mather measure. Dt = MY(L).

e We assume henceforth that ¢ = 0. (Replace H by H — c if
needed.)

The family (v*)x>o0 is equi-Lipschitz and uniformly bounded on
T™ (= relatively compact in C(T™) by A"2 theorem).

(Uniform boundedness) Let vg € C(T™) be a solution of (E).

Let C' > 0 be a constant such that ||vg||lcoc < C, and note that
vo + C (reps. vg — C) is a supersolution (resp. a subsolution) of
(Px)-

By the comparison theorem, which is valid for (Py) with A > 0,

vo—C < v*<wvg+C VA>O0.
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V  all accumulation points of (v*)x>0 in C(T™) as A — 0+.
By the observation above, V # 0.

To show Theorem 3 (Davini et al.), it is enough to prove that
#(V) <1
The main part of the proof (Theorem 3):

(Claim 1) (py,v) <0 Yv eV, Vu € M.
(Claim 2) For Vv,w € V, Vz € T™ Ju € M s.t.
w(z) < v(2) + (,w).

Claims 1 and 2 show that v,w € V = v = w. le, #VY < 1.
Proof (sketch) of Claims 1 and 2
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Davini et al. have obtained two representations of the limit
function of (v*). Here is one of them.

Theorem 6 Assume (HO)—(H2) and that ¢ = 0. Let
v? € C(T™) be the limit function of (v?), that is,

v = lim v in C(T").
A—0+4

Then

v (2) = max{w(z) | w € S, (u,w) < 0Vu € M},

where S denotes the set of all solutions of (E).
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Remarks. e Davini et al. have proved Theorem 4 by using
techniques from optimal control or dynamical systems

(value functions, the Hopf-Lax-Oleinik formula).

Mitake-Tran use the adjoint method introduced by L. C. Evans.

Mitake-Tran-HI use the convex duality argument similar to those
used by Gomes (Duality principles for fully nonlinear elliptic
equations, 2005) and Mikami-Thieullen (Duality theorem for the
stochastic optimal control problem, 2006). A feature of this
approach by Mitake-Tran-HI is that it belongs to

functional analysis and is easily adopted to different situations, for

instance, 2nd-order elliptic equations, nonlocal equations, systems
of PDEs without going into detailed studies of the underlying
dynamics.

Siconolfi-HI use the convex duality in the form of the Hahn-Banach

theorem.
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e The measures u € Uz,)\ M(z, A\, L) are supported in a
common compact subset of T™ x R™. This is a consequence of
the fact that supys || Dv*||eo < 00 (equi-Lipschitz).

The set UZ,A Mi(z, A, L) is relatively compact in the topology of
the weak convergence in the sense of measures.
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SYSTEMS OF HJ EQUATIONS
Some recent results with Liang Jin.
The problem is now the m-system

)\v{‘ + Hl(m,Dvi‘,v)‘) =0 inT™,

)\vf,‘n + Hm(x,Dqu‘z,vA) =0 inT".

We write for the system above simply

(Px) v + H(z, Dv*,v*) =0 in T",
where v* = (v)) and H = (H;).
Assume

(1) H; € C(T™ x R™ x R™).
(2) H; is coercive, that is,

lim H;(x,p,u) = oo uniformly for (x,u) € T"XBg, VR > 0.

|p|—o00
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(3) (p,u) — H;(x,p,u) is convex for any x € T™.
(4) H = (H;) is monotone, that is, for u,v € R™,

(U’_v)k = m?x(u—v),- >0 = Hk(:c,p’ u) > Hk(w’pvv)°

(5) H(x,Du,u) = 0 has a solution u € C(T™)™.

Theorem 7 Assume (1)—(5) above. Then, as A — 04, we
have
v = ¥0 inC(TH™

for some v% € C(T™)™.

Davini-Zavidovique (2019) have studied the case where the
coupling is linear and the coupling coefficients are constants.
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Examples (coupling)

£l Auy + |Dug| + vy — u2 = fi(x),
(EL) )\U2+|DU2|2+U2_U1 = fa(z).
E2 Aui + |Duq| + (w1 — u2)t = fi(x),
(E2) Auz + |[Dua| + (uz — ur)t = fo(z).
£a Auy + |Duy| + w1 = fi(x),
(E3) Aug + |DU2|2 + uz = fa(x).
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Some ideas for the proof.
e Setl={1,...,m} and

L'i(x’ £, 77) = (SuP)[£ ‘p+n-u— Hi(w’p’ u)]a
p,u

Y; ={n€R™|D> n; >0, n; <0 forj #i}.
jel

Theorem 8  Assume (1)—(3). Then,

H monotone <= L;(x,&,m) =00 for n € R™\Y;
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o When A > 0, we set T*(n) =1 4+ A~1 >_;mj form € R™.
Note that

T ) >1 VneY;, i€l

H$+ATA1(“7v D(u+1),u+1) = Hj)‘(a:, Du,u),
where1 = (1,...,1) € R™ and

H$(w,pu) = (Auz + SuP(£ Fn-u— d)z(a’a &, 77)))
(&m) i€l

P(A) the set of collections g = (p4)ier of

nonnegative Borel measures p; on T™ X R™ X Y; such that

(mis |l +[nl) <oco Vi€l and » (u;,TY) =1.
il
P(0) the set of collections pu = (p;) of
nonnegative Borel measures p; on T™ X R™ X Y; such that

(pis |€] + Inl) < oo and > (s, 1) < 1.
i€l
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e Fix (z,k,A\) € T" x I x [0, o0).
&(z,k, ), closed measures all p = (p;) € P(A) such that
Mp(z) =D (i & - Dips +m - + Aap;) Vop € CH(T™)™.

i€l

Theorem 9 Assume (1)—(4). Then, if A > 0,
Avp(z) = min Z(NmL ).

HEE(z:k,N) £

Discounted Mather measures  91(z, k, A).
Proof (sketch).  We have ||(v*, Dv*)||oo < 00, We may
assume that for some R > 0,
{Li(w’ £€,m) =4oo if (&,n) € K,
L; € C(T" x K;),
where
K;=Bipx (BrNY;), icl
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F (M) all pairs u = (u;)ier € C(T™)™ and
¢ = (¢i)ie1 € [1;e1 C(T™ X Kj;) such that

Au(z) + Hy(x, Du(x),u(x)) <0 inT",
where qu, = (H¢’i)ie]1 and

H¢,i(w,p,v)=(£r;1)aex p-&+v-n— di(x,€&m)].

Our claim now is: Theorem 9 holds when we replace €(z, k, A) by
Cr(z, k, A) := {p = (pi) € €(2,k, A) | supp pi C T" XK}

Similarly, Pr () for A > 0.
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Set
G(z,k,A) = {d — Aur(2)T*1 | (u, d) € F(N)},

where1 = (1,...,1) € R™.
This is a closed convex cone in [[;c; C(T™ x K;) with vertex at

the origin.

Theorem 10 Let (z,k,A) € T X I X (0, co) and
pw € Prx(N). Then, p € €x(z,k,A) if and only if

D (uirgi) >0 Vg = (gi) € G(2,k, N).
Al
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Proof (pictorial) (Jv € M(z, k, \))

[[;c1 C(T™ X K;)

p.25



THANK YOU FOR YOUR ATTENTION!



APPENDIX



Theorem 11 Let x, u € C(T"™). Let
(z,A) € T" X [0, 00). Assume (HO)—(H2) and that u is a
subsolution of Au + H(z, Du) = x in T™. Then

Au(z) < (pu, L+x) Vp € €(z,A).

Proof (sketch). Assume that u € C*. Then
Au(w) +&- Du(w) < L(:I:, 5) + X($)a
which implies

Au(z) = (p,Au+&-Du) (7 p€ €(z,A))
<{wL+x) Vue&(zA). O



Claim 1: Letv € V and p € M. If we set x := —Av>, then
H(z,Dv*) =x inT",
and, by Theorem 11,

0 <(u, L+x)=(, L — 2™
= <“? L> _<IL7 AU)\> = _>‘</1'a 1))‘>,
——
=0
and

(KL 'U}\> <0.

In the limit as A — 0+, we get Claim 1.



Claim 2: Fix any v,w € V and z € T™. Choose a sequence
Aj — 0+ such that

vN — v in C(T™).

By Theorem 4, we may choose a discounted Mather measure
i € M(z,Aj). Observe that

Ajw + H(z, Dw) = A\jw,
and, by Theorem 11,
Ajw(z) <(pj, L+ Ajw) = (pj, L) +Aj{p;, w)
——

=X (2)

= )\ijj (2) + Aj(pj, w).



Dividing the above by A; and taking the limit along a subsequence
of (Aj), we get
w(z) < v(z) + (1, w)

for some p € M and, hence, w(z) < v(2).



e Since (v}, L) € F(\), we have
L — 2o (2)T* € G(2,k,A) and, for all p € €(z, k, A),

0< Z iy Li — dvp(2)T?) = —Awvp(2) + Z i, L

i€l i€l

e Jv € &(z, k, A) minimizer: Note that if ||¢}||co < 1, then
(v*, L +1+ ¢) € F(X). This implies that int G(z,k, ) # 0.
We may show that L — Avp(2)T*1 € 8G(z, k, A) By the
Hahn-Banach theorem, v € (J];¢; C(K;))" such that v # 0
and

(v, L — A (2)T) < (v,g) Vg € G(z,k,N).
Since t(L — Avp(2)T*1) € G(z,k, A), we see that
(v, L — Avp(2)T1) = 0.

o For ¢ = (¢), if ¢; > 0Vi €1, then (v*, L + ¢) € F(N).
This, with the Riesz theorem, implies that v; > 0 and are Radon
measures.
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