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Eigenvalue Lower Bound

Theorem (Lichernowicz 1958, Obata 1962)

Let (M", g) be a closed Riemannian n-manifold with
Ricg > (n—1)K > 0. Then

)\1(M) > nK.

Equality holds if and only if M = Sn(#).

@ \i(M) is first (nonzero) eigenvalue of Ay,. Variational
characterization

ik
A (M) = inf Ju VAT 2’ .
fecy(m), [y, f=0 [, f

@ Maximum principle or Integral method on Bochner's formula.



Eigenvalue Lower Bound

@ Integral method on Bochner's formula
/ (AF)? — |V2f|)? = / Ricg(Vf, V).
M M

Using |V2f]2 > 1(Af)? and Ric; > (n— 1)K > 0,

n—1 n—1
AFP = / Af)?
= [ % — [ @
> (n— 1)K/ V2 = (n— 1)K)\1/ £,
M M

e Equality by Obata’s theorem:
A closed Riemannian n-manifold which admits a solution to

V2f = —Kfg

must be S”(#).



Eigenvalue Lower Bound

Let (M", g) be a compact Riemannian n-manifold with boundary
r

o (Reilly '77) Assume Ricg > (n— 1)K > 0 and Hx > 0 (mean
convex boundary). Then \P(M) > nK.

e (C. Y. Xia '88, Escobar '90) Assume Ricg > (n— 1)K >0
and hs > 0 (convex boundary). Then \Y(M) > nK.

Equality holds if and only if M = 8"

()

@ First Dirichlet eigenvalue and Neumann eigenvalue of Ay

[VF]?

W)= Jul¥IE
eci(M)fls=0 [y, f

V|2

fFeCc (M), [, F=0 [y, F2



Eigenvalue Lower Bound

Theorem (Li-Yau '80, Zhong-Yang '84, Hang-Wang '07)

Let (M", g) be a compact Riemannian n-manifold possibly with
convex boundary .. Assume Ricg > 0. Then

where d = diam(M). Equality holds if and only if M is a
1-dmensional round circle or a segment.
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Eigenvalue Lower Bound

Theorem (Li-Yau '80, Zhong-Yang '84, Hang-Wang '07)

Let (M", g) be a compact Riemannian n-manifold possibly with
convex boundary .. Assume Ricg > 0. Then

2

N
AL (M) > 72

where d = diam(M). Equality holds if and only if M is a
1-dmensional round circle or a segment.

Theorem (Andrews-Clutterbuck '11)

Let Q C R" be a bounded convex domain and )\ be the Dirichlet
eigenvalues for Schrodinger operator A + V with convex V. Then

372
)\2 - /\1 Z ?

2 . . . .
3(,% is the spectral gap for 1-dimensional Laplacian on [—%, %] o




Steklov Eigenvalue

e Let (M", g) be a compact Riemannian n-manifold with
boundary X.
For f € C*°(X), let f be its harmonic extension in M,
Af=0inM, f=FfonX.
@ Dirichlet-to-Neumann operator
L:C™®(%) — C™(Y)
of
f —.
~ ov

v is outward unit normal to X.
@ L is linear, nonnegative, self-adjoint operator with compact
inverse, hence its spectrum is given by
O=0p<o01 <0<+ = 00.

oj is called Steklov eigenvalues, first considered by Steklov
1900 in Euclidean space.



Steklov Eigenvalue

@ Steklov eigenvalues:

Af=0in M, g:m‘onz.

ov
@ Variational characterization:
VFl?
o1(M) = inf Jul VA 2’ :
FeCY(M), [y f=0 [
\Vak
ox(M)=inf sup fM|72‘
scci(m), oxfes  Jx f
dimS=k+1



Steklov Eigenvalue

@ Steklov eigenvalues for Euclidean unit disk By C R2:
0,1,1,2,2, -+ k,k,---
Corresponding Steklov eigenfunctions:
1, rcosp, rsing,--- ,rkcoskga, r¥sin ko, ---

@ Steklov eigenvalues for Euclidean unit ball B; C R™

k—1 k —
k € N with multiplicity (n—:_ 1 > - <n:_ 1 3)

Corresponding Steklov eigenfunctions:
homogeneous harmonic polynomials of degree k.



Lower Bound for Steklov Eigenvalue

@ Payne '70: M? C R?, boundary geodesic curvature
kg(Z) > ¢ >0 = o1 > c. Equality holds iff M = B2(2).

e Escobar '97: (M2, g), Gauss curvature K > 0 and
kg(X) > ¢ >0 = o1 > c. Equality holds iff M = B?(1).

@ Escobar '97: (M",g),n > 3, Ricg > 0 and all boundary
principal curvatures k(X) > ¢ >0 = o1 > 5.

@ Escobar's Conjecture: (M",g),n > 3,
Ricg > 0 and k(X)) > c>0= 01 > c.
Equality holds iff M =~ B"(1).

(Compare to Lichernowicz-Obata's theorem)

@ Even unknown for Euclidean case M" C R", n > 3.
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Isoperimetric upper bound for Steklov Eigenvalue

Two dimensions (M2, g)
o Weinstock '54: simply connected, o1L < 27 = (01L)(B?) (L is
boundary length). Equality holds iff 3 a conformal
diffeomorphism ¢ : M — B? such that ¢|s is an isometry.

o Fraser-Schoen '11: , 01L < 2(g + r)m, genus g and boundary
components r.

@ Fraser-Schoen '16: annulus type, o1L < (01L)(Mcc), Mcc is
critical catenoid in B3.
@ Fraser-Schoen '16: If

(01L)(M, go) = mgaX(Ull)(Mjg),

then there exist independent eigenfunction vy, - - - , u, which
give a conformal free boundary minimal immersion
ui : (M, go) — B" with u;|x is an isometry.

e Matthiesen-Petrides '20 (arXiv): any topological type,

existence of smooth maximal metric for o1 L.
11 /30



Isoperimetric upper bound for Steklov Eigenvalue

Higher dimensions M" C R", n > 3
e Brock '01: o1Voln < (alVol%)(B”), Equality holds iff
M" = B"(r).

° Bucur-Felrone-Nitsch—Terbetti "17: convex,
o1Arean1 < (o1Arean1)(B"), Equality holds iff
M"™ =B"(r).

@ Fraser-Schoen '17: 3 smooth colntractible domain .
M" C R", n > 3 with (o01Arean1)(M) > (o1Arean1)(B")
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Comparison of Steklov Eigenvalue with Boundary
Eigenvalue

e Q.L.Wang-C.Y.Xia '09: (M",g),n> 3, Ricg > 0 and
k(X) > ¢ >0, then

01 < (n_\/)\ill)c(\/)\»l—i— \/ A1 — (n—1)c2).

where \; is first closed eigenvalue of (X, gs). (A1 > (n—1)c?
was proved by C.Y.Xia '07.)
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Comparison of Steklov Eigenvalue with Boundary
Eigenvalue

e Q.L.Wang-C.Y.Xia '09: (M",g),n> 3, Ricg > 0 and
k(X) > ¢ > 0, then

01 < 5 n—l (VA1 + /A1 — (n—1)c2).

where \; is first closed eigenvalue of (X, gs). (A1 > (n—1)c?
was proved by C.Y.Xia '07.)

o Karpukhin '17: (M",g),n >3, W > 0and k(X) > ¢ > 0,
then

ok < M sy
“(n—1)c 7
Ok < — 2)\/( , N = 3.
3c
(Based on Results on Steklov eigenvalue estimates for p-forms
by Raulot-Savo '12, Yang-Yu '17)
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Our results

Theorem (Xiong- X. '19)

Let (M",g),n > 2 be a compact Riemannian n-manifold with
boundary ¥

Assume Sectg > 0 and k(X) > ¢ > 0. Then o1 > c.

Equality holds if and only if M = B"(1) c R".

@ Escobar’s conjecture holds true for manifolds with Sectg > 0.
Especially, true for Euclidean domains.
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Our results

Theorem (Xiong- X. '19)

Let (M",g),n > 2 be a compact Riemannian n-manifold with
boundary .
Assume Sectg > 0 and k(X) > ¢ > 0.
Then
< L
7= —1)c
with equality holds if and only if M = ]B%”(%) c R".
Moreover,
Ak
< ——— Vk.
= (n— 1)c’v

@ Compare with Q.L.Wang-C.Y .Xia '09, stronger assumption
and stronger conclusion;
Compare with Karpukhin '17, different assumption and same

conclusion in n > 4 and better conclusion in n = 3.
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Review of Payne-Escobar’'s method in n = 2.

o A|VF|2 >0, then ¢ = |Vf|? attains its maximum at xo € O%.

@ At xp € 022, consider Fermi coordinates of 02, 010 is
parametrized by arc-length ~(s).

0=Aflg =1, +rfy+ " =1, +rorf +1f".
Then f,, = —ko1f — f”, and

0 < ¢pu(s0) = 2(—f" — ko1 f)orf +2(o1 — K)F?,
¢'(s0) = 0,¢"(s0) < 0.
All inequalities involves only f, f’, f”. By simple calculation,

one can show o1 > k(sp) > c.

@ This method fails to handle higher dimensions.

16
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Review of Escobar's method in n > 3.

@ n > 3, using Reilly’s formula
/M [(AF)? —|V?f|? — Ric(Vf,VF)]
= /)t [2f, A5 f + Hf2 + h(Vsf, Vsf)]
Using Af =0, f, = o1f, Ric > 0, h > cgy, one gets
0> /z(c —201)|Vsf[> + Ho2f?.

Thus 01 > 5.
o No information between [¢|Vsf|? and [ 2.
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Two integral identities. Let £,V € C°(M).

Proposition (Qiu-X. '15, Weighted Reilly’s formula)

/ V ((AF)* — |V2F]?)
M

_ / V [20,FASF + H(0,f)? + h(Vsf, Vif)]
pu

+/ 8,V |Vsf|? +/ (V2V — AVg + VRic,) (VF, VF).
> Q

Proposition (Pohozaev's identity)

/<VV,Vf>Af+/(VQV—;AVg)(Vf,Vf)
M M

= /(ayf<vv,w> — %|Vf|28,,V).
Y
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Key choice of V:

°
V=p-— %pz where p = dist(-, X).

@ V > 0since p < % (by only assuming Ric > 0and H> n—1:
M.Li '14)

o Ve CO(M)and Ve C®(M\ Cut(X)).

e V=0and 0,V =(1-cp)Oyp=—1onX.

19/30



@ Hessian Comparison (Heintze-Karcher '78, Kasue '82):
If Sectg >0, h > cgs > 0, then

V2V < —cg on M\ (X U Cut(¥)).
@ V is —c-concave in the sense of H.-H. Wu:
C(V)(x;Y) = liminf V(expy(rY)) + V(exp,(=rY)) —2V(x)

r—0 r2
< —c

for any x € M and any Y € T, M with |Y| =1.
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Proposition (Smooth approximation)

Fix a neighborhood C of Cut(X) in M. Then for any € > 0, there
exists a smooth nonnegative function V. on M such that V. =V
on M\ C and

V2V, < —(c—¢€)g.

@ Greene-Wu's Riemannian convolution V, for —c-concave
function V in a small neighborhood O of Cut(X) is still
—c-concave.

@ Gluing the Riemannian convolution V; in O and V outside O
by a cut-off function.

o V.>0o0on M.
e V.=V=0and 9, V. =0,V =—-1on%.
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Two integral identities. Let £,V € C°(M).

Proposition (Qiu-X. '15, Weighted Reilly’s formula)

/ V ((AF)* — |V2F]?)
M

_ / V [20,FASF + H(0,f)? + h(Vsf, Vif)]
pu

+/ 8,V |Vsf|? +/ (V2V — AVg + VRic,) (VF, VF).
> Q

Proposition (Pohozaev's identity)

/<VV,Vf>Af+/(VQV—;AVg)(Vf,Vf)
M M

= /(ayf<vv,w> — %|Vf|28,,V).
Y




@ Let f is harmonic.

@ Use V. in Qiu-Xia's Reilly formula and Pohozaev's identity, we
get

0> / VP + / (V2V. — AV.g)(VF,VF).
> M

1 1 1
/z2|vzfy2 — 5(8Vf)2 = /M(v2 Ve — SAVeg)(VF, Vf).

e Eliminating [5 [Vxf|?, we have

/z(a f)> /v2 (VF,VF)> (c—a)/M]Vf|2.
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/(af /v2 (VFf,VF) c—5/|Vf|2.
p

o If f is first Steklov eigenvalue,

/ ny|2=01/ f2
M pu

o,f = o1f,

and

We conclude o1 > c.
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Return to

02/—!sz\2+/(V2V€—AV5g)(Vf,Vf).
> M

@ If f is harmonic extension of first boundary closed
eigenfunction, then

/|sz|2:)\1/ 2.
> >

@ From Hessian comparison,
(V2V. — AVLg)(VFf, V) > (n—1)(c — )|V
Note [¢ f =0, using variational charaterization,

I V2 _ x
Jsf2 “n-1

o1 <
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Let {¢k} be eigenfunctions corresponding to A on X, forming an
orthonormal basis of L?(X). Let f; be harmonic extension of .
Then using min-max variational characterization,

su V( akfy)
JP/\Zkk

k= oak*
1
< (71 sup |V>: Zal&Pk
n= J _oa=1
1 2
. Oak_lk 0
< #
~(n—1)c
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Our proof

Equality characterization: Obata type theorem.

Proposition

Let (2, g) be an n-dimensional compact Riemannian manifold with
boundary ¥ such that

Ricg >0in Q,H > (n—1)c on ¥.
Assume there exists a nontrivial smooth function f satisfying

V3 =0inQ, O, f=cfonX. (1)

Then Q is isometric to a Euclidean ball with radius 1/c.

@ Without the curvature condition, there might be other
manifolds admitting the solution to (1). Chen-Lai-Wang
studied such Obata's theorem.
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@ An idea due to B. Andrews.
o Step 1: Let Ny = {x € M, f(x) = t}, Vf is Killing, M is
product manifold Ny x R.
@ Step 2: Write ¥ as graphs over Ny, X1 = {(x,us) : x € Np},
uy > 0,u_ <0, satisfying
1

1+ \Vui|2

o Step 3: {x € Np: uy(x) =1} = {x}. By setting

— <

= CU+.

T, ={x€eNy: \/@ = c7}, one shows
T < dist(xp, T+). In particular,

1/c < dist(xo, T1/c) = dist(xo, INo)

which implies Ng is an (n — 1)-Euclidean ball with radius 1.
@ Step 4: ¥ is a half-sphere on Np.

28 /30



e Escobar’s conjecture (Ricg > 0,ky > ¢ > 0)7

@ Is it possible Escobar’s conjecture true for
Ricg > 0, Hy > ¢ > 0. Note that V satisfies Laplace
comparison under this assumption.

o If ¢ — 0, then o1 > c is trivial. How to estimate o7 by other
geometric quantities, compare Li-Yau-Zhong-Yang's estimate:
If Ricg > 0 (with convex boundary), then

N

AV(MY > =, d=diam(M).

Nl

Equality only for M = S!(r) or 1-dim interval.
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Thank you for your attention!
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