Recent progress on a sharp lower bound for first (nonzero) Steklov eigenvalue

Chao Xia (Xiamen University) (joint with Changwei Xiong)

Asia-Pacific Analysis and PDE Seminar

May 11th, 2020

Table of Contents

- Review of eigenvalue lower bound
- Introduction to Steklov eigenvalue
- Review of Steklov eigenvalue estimates
- Our result and proof

Theorem (Lichernowicz 1958, Obata 1962)

Let (M^n,g) be a closed Riemannian n-manifold with $Ric_g \geq (n-1)K > 0$. Then

$$\lambda_1(M) \geq nK$$
.

Equality holds if and only if $M \cong \mathbb{S}^n(\frac{1}{\sqrt{K}})$.

• $\lambda_1(M)$ is first (nonzero) eigenvalue of Δ_M . Variational characterization

$$\lambda_1(M) = \inf_{f \in C^1(M), \int_M f = 0} \frac{\int_M |\nabla f|^2}{\int_M f^2}.$$

• Maximum principle or Integral method on Bochner's formula.

Integral method on Bochner's formula

$$\int_{M} (\Delta f)^{2} - |\nabla^{2} f|^{2} = \int_{M} \textit{Ric}_{g}(\nabla f, \nabla f).$$

Using $|\nabla^2 f|^2 \geq \frac{1}{n} (\Delta f)^2$ and $Ric_g \geq (n-1)K > 0$,

$$\frac{n-1}{n} \int_{M} \lambda_{1}^{2} f^{2} = \frac{n-1}{n} \int_{M} (\Delta f)^{2}$$

$$\geq (n-1)K \int_{M} |\nabla f|^{2} = (n-1)K\lambda_{1} \int_{M} f^{2}.$$

Equality by Obata's theorem:
 A closed Riemannian n-manifold which admits a solution to

$$abla^2 f = -K f g$$

must be $\mathbb{S}^n(\frac{1}{\sqrt{K}})$.

$\mathsf{Theorem}$

Let (M^n, g) be a compact Riemannian n-manifold with boundary Σ .

- (Reilly '77) Assume $Ric_g \ge (n-1)K > 0$ and $H_\Sigma \ge 0$ (mean convex boundary). Then $\lambda_1^D(M) \ge nK$.
- (C. Y. Xia '88, Escobar '90) Assume $Ric_g \ge (n-1)K > 0$ and $h_{\Sigma} \ge 0$ (convex boundary). Then $\lambda_1^N(M) \ge nK$.

Equality holds if and only if $M \cong \mathbb{S}^n_+(\frac{1}{\sqrt{K}})$.

ullet First Dirichlet eigenvalue and Neumann eigenvalue of Δ_M

$$\lambda_{1}^{D}(M) = \inf_{f \in C^{1}(M), f|_{\Sigma} = 0} \frac{\int_{M} |\nabla f|^{2}}{\int_{M} f^{2}}.$$
$$\lambda_{1}^{N}(M) = \inf_{f \in C^{1}(M), \int_{M} f = 0} \frac{\int_{M} |\nabla f|^{2}}{\int_{M} f^{2}}.$$

Theorem (Li-Yau '80, Zhong-Yang '84, Hang-Wang '07)

Let (M^n,g) be a compact Riemannian n-manifold possibly with convex boundary Σ . Assume $Ric_g \geq 0$. Then

$$\lambda_1^N(M) \geq \frac{\pi^2}{d^2},$$

where $d = \operatorname{diam}(M)$. Equality holds if and only if M is a 1-dmensional round circle or a segment.

Theorem (Li-Yau '80, Zhong-Yang '84, Hang-Wang '07)

Let (M^n,g) be a compact Riemannian n-manifold possibly with convex boundary Σ . Assume $Ric_g \geq 0$. Then

$$\lambda_1^N(M) \geq \frac{\pi^2}{d^2},$$

where $d = \operatorname{diam}(M)$. Equality holds if and only if M is a 1-dmensional round circle or a segment.

Theorem (Andrews-Clutterbuck '11)

Let $\Omega \subset \mathbb{R}^n$ be a bounded convex domain and λ be the Dirichlet eigenvalues for Schrödinger operator $\Delta + V$ with convex V. Then

$$\lambda_2 - \lambda_1 \geq \frac{3\pi^2}{d^2}$$
.

 $\frac{3\pi^2}{d^2}$ is the spectral gap for 1-dimensional Laplacian on $\left[-\frac{D}{2},\frac{D}{2}\right]$.

Steklov Eigenvalue

• Let (M^n, g) be a compact Riemannian *n*-manifold with boundary Σ .

For $f \in C^{\infty}(\Sigma)$, let \hat{f} be its harmonic extension in M,

$$\Delta \hat{f} = 0$$
 in M , $\hat{f} = f$ on Σ .

Dirichlet-to-Neumann operator

$$L: C^{\infty}(\Sigma) \longrightarrow C^{\infty}(\Sigma)$$
$$f \longmapsto \frac{\partial \hat{f}}{\partial \nu}.$$

 ν is outward unit normal to Σ .

• *L* is linear, nonnegative, self-adjoint operator with compact inverse, hence its spectrum is given by

$$0 = \sigma_0 < \sigma_1 \le \sigma_2 \le \cdots \to \infty.$$

 σ_i is called Steklov eigenvalues, first considered by Steklov 1900 in Euclidean space.

Steklov Eigenvalue

Steklov eigenvalues:

$$\Delta f = 0$$
 in M , $\frac{\partial f}{\partial \nu} = \sigma f$ on Σ .

Variational characterization:

$$\sigma_{1}(M) = \inf_{f \in C^{1}(M), \int_{\Sigma} f = 0} \frac{\int_{M} |\nabla f|^{2}}{\int_{\Sigma} f^{2}},$$

$$\sigma_{k}(M) = \inf_{\substack{S \subset C^{1}(M), \ 0 \neq f \in S \\ dim S = k+1}} \frac{\int_{M} |\nabla f|^{2}}{\int_{\Sigma} f^{2}}.$$

Steklov Eigenvalue

• Steklov eigenvalues for Euclidean unit disk $\mathbb{B}_1 \subset \mathbb{R}^2$:

$$0, 1, 1, 2, 2, \cdots, k, k, \cdots$$

Corresponding Steklov eigenfunctions:

$$1, r\cos\varphi, r\sin\varphi, \cdots, r^k\cos k\varphi, r^k\sin k\varphi, \cdots$$

• Steklov eigenvalues for Euclidean unit ball $\mathbb{B}_1 \subset \mathbb{R}^n$:

$$k \in \mathbb{N}$$
 with multiplicity $\binom{n+k-1}{n-1} - \binom{n+k-3}{n-1}$

Corresponding Steklov eigenfunctions: homogeneous harmonic polynomials of degree k.

Lower Bound for Steklov Eigenvalue

- Payne '70: $M^2 \subset \mathbb{R}^2$, boundary geodesic curvature $k_g(\Sigma) \geq c > 0 \Rightarrow \sigma_1 \geq c$. Equality holds iff $M = \mathbb{B}^2(\frac{1}{c})$.
- Escobar '97: (M^2, g) , Gauss curvature $K \ge 0$ and $k_g(\Sigma) \ge c > 0 \Rightarrow \sigma_1 \ge c$. Equality holds iff $M \cong \mathbb{B}^2(\frac{1}{c})$.
- Escobar '97: $(M^n, g), n \ge 3, Ric_g \ge 0$ and all boundary principal curvatures $\kappa(\Sigma) \ge c > 0 \Rightarrow \sigma_1 > \frac{c}{2}$.
- Escobar's Conjecture: $(M^n, g), n \geq 3$, $Ric_g \geq 0$ and $\kappa(\Sigma) \geq c > 0 \Rightarrow \sigma_1 \geq c$. Equality holds iff $M \cong \mathbb{B}^n(\frac{1}{c})$. (Compare to Lichernowicz-Obata's theorem)
- Even unknown for Euclidean case $M^n \subset \mathbb{R}^n$, $n \geq 3$.

Isoperimetric upper bound for Steklov Eigenvalue

Two dimensions (M^2, g)

- Weinstock '54: simply connected, $\sigma_1 L \leq 2\pi = (\sigma_1 L)(\mathbb{B}^2)$ (L is boundary length). Equality holds iff \exists a conformal diffeomorphism $\varphi: M \to \mathbb{B}^2$ such that $\varphi|_{\Sigma}$ is an isometry.
- Fraser-Schoen '11: , $\sigma_1 L \leq 2(g+r)\pi$, genus g and boundary components r.
- Fraser-Schoen '16: annulus type, $\sigma_1 L \leq (\sigma_1 L)(M_{cc})$, M_{cc} is critical catenoid in \mathbb{B}^3 .
- Fraser-Schoen '16: If

$$(\sigma_1 L)(M, g_0) = \max_{g} (\sigma_1 L)(M, g),$$

then there exist independent eigenfunction u_1, \dots, u_n which give a conformal free boundary minimal immersion $u_i: (M, g_0) \to \mathbb{B}^n$ with $u_i|_{\Sigma}$ is an isometry.

• Matthiesen-Petrides '20 (arXiv): any topological type, existence of smooth maximal metric for $\sigma_1 L$.

Isoperimetric upper bound for Steklov Eigenvalue

Higher dimensions $M^n \subset \mathbb{R}^n$, $n \geq 3$

- Brock '01: $\sigma_1 \operatorname{Vol}^{\frac{1}{n}} \leq (\sigma_1 \operatorname{Vol}^{\frac{1}{n}})(\mathbb{B}^n)$, Equality holds iff $M^n = \mathbb{B}^n(r)$.
- Bucur-Ferone-Nitsch-Trombetti '17: convex, $\sigma_1 \operatorname{Area}^{\frac{1}{n-1}} \leq (\sigma_1 \operatorname{Area}^{\frac{1}{n-1}})(\mathbb{B}^n)$, Equality holds iff $M^n = \mathbb{B}^n(r)$.
- Fraser-Schoen '17: \exists smooth contractible domain $M^n \subset \mathbb{R}^n, n \geq 3$ with $(\sigma_1 \operatorname{Area}^{\frac{1}{n-1}})(M) > (\sigma_1 \operatorname{Area}^{\frac{1}{n-1}})(\mathbb{B}^n)$

Comparison of Steklov Eigenvalue with Boundary Eigenvalue

• Q.L.Wang-C.Y.Xia '09: (M^n, g) , $n \ge 3$, $Ric_g \ge 0$ and $\kappa(\Sigma) \ge c > 0$, then

$$\sigma_1 \leq \frac{\sqrt{\lambda_1}}{(n-1)c}(\sqrt{\lambda_1} + \sqrt{\lambda_1 - (n-1)c^2}).$$

where λ_1 is first closed eigenvalue of (Σ, g_{Σ}) . $(\lambda_1 \ge (n-1)c^2)$ was proved by C.Y.Xia '07.)

Comparison of Steklov Eigenvalue with Boundary Eigenvalue

• Q.L.Wang-C.Y.Xia '09: $(M^n,g), n \ge 3, Ric_g \ge 0$ and $\kappa(\Sigma) \ge c > 0$, then

$$\sigma_1 \leq \frac{\sqrt{\lambda_1}}{(n-1)c}(\sqrt{\lambda_1} + \sqrt{\lambda_1 - (n-1)c^2}).$$

where λ_1 is first closed eigenvalue of (Σ, g_{Σ}) . $(\lambda_1 \ge (n-1)c^2)$ was proved by C.Y.Xia '07.)

• Karpukhin '17: $(M^n, g), n \ge 3, \ W^{[2]} \ge 0$ and $\kappa(\Sigma) \ge c > 0$, then

$$\sigma_k \le \frac{\lambda_k}{(n-1)c}, n \ge 4,$$
 $\sigma_k \le \frac{2\lambda_k}{2c}, n = 3.$

(Based on Results on Steklov eigenvalue estimates for *p*-forms by Raulot-Savo '12, Yang-Yu '17)

Our results

Theorem (Xiong- X. '19)

Let (M^n, g) , $n \ge 2$ be a compact Riemannian n-manifold with boundary Σ .

Assume $\operatorname{Sect}_g \geq 0$ and $\kappa(\Sigma) \geq c > 0$. Then $\sigma_1 \geq c$. Equality holds if and only if $M \cong \mathbb{B}^n(\frac{1}{c}) \subset \mathbb{R}^n$.

• Escobar's conjecture holds true for manifolds with $\mathrm{Sect}_g \geq 0$. Especially, true for Euclidean domains.

Our results

Theorem (Xiong- X. '19)

Let (M^n, g) , $n \ge 2$ be a compact Riemannian n-manifold with boundary Σ .

Assume $\operatorname{Sect}_g \geq 0$ and $\kappa(\Sigma) \geq c > 0$.

Then

$$\sigma_1 \leq \frac{\lambda_1}{(n-1)c}$$

with equality holds if and only if $M \cong \mathbb{B}^n(\frac{1}{c}) \subset \mathbb{R}^n$. Moreover,

$$\sigma_k \leq \frac{\lambda_k}{(n-1)c}, \forall k.$$

 Compare with Q.L.Wang-C.Y.Xia '09, stronger assumption and stronger conclusion;

Compare with Karpukhin '17, different assumption and same conclusion in $n \ge 4$ and better conclusion in n = 3.

Review of Payne-Escobar's method in n = 2.

- $\Delta |\nabla f|^2 \geq 0$, then $\varphi = |\nabla f|^2$ attains its maximum at $x_0 \in \partial \Omega$.
- At $x_0 \in \partial \Omega$, consider Fermi coordinates of $\partial \Omega$, $\partial \Omega$ is parametrized by arc-length $\gamma(s)$.

$$0 = \Delta f|_{\Sigma} = f_{\nu\nu} + \kappa f_{\nu} + f'' = f_{\nu\nu} + \kappa \sigma_1 f + f''.$$

Then $f_{
u
u} = -\kappa \sigma_1 f - f''$, and

$$0 \le \varphi_{\nu}(s_0) = 2(-f'' - \kappa \sigma_1 f)\sigma_1 f + 2(\sigma_1 - \kappa)f'^2, \varphi'(s_0) = 0, \varphi''(s_0) \le 0.$$

All inequalities involves only f, f', f''. By simple calculation, one can show $\sigma_1 \ge \kappa(s_0) \ge c$.

• This method fails to handle higher dimensions.

Review of Escobar's method in $n \geq 3$.

• $n \ge 3$, using Reilly's formula

$$\int_{M} \left[(\Delta f)^{2} - |\nabla^{2} f|^{2} - Ric(\nabla f, \nabla f) \right]$$

$$= \int_{\Sigma} \left[2f_{\nu} \Delta_{\Sigma} f + Hf_{\nu}^{2} + h(\nabla_{\Sigma} f, \nabla_{\Sigma} f) \right]$$

Using $\Delta f=0$, $f_{
u}=\sigma_1 f$, $\mathit{Ric}\geq 0$, $\mathit{h}\geq \mathit{cg}_{\Sigma}$, one gets

$$0 \geq \int_{\Sigma} (c-2\sigma_1) |
abla_{\Sigma} f|^2 + H\sigma_1^2 f^2.$$

Thus $\sigma_1 > \frac{c}{2}$.

• No information between $\int_{\Sigma} |\nabla_{\Sigma} f|^2$ and $\int_{\Sigma} f^2$.

Two integral identities. Let $f, V \in C^{\infty}(M)$.

Proposition (Qiu-X. '15, Weighted Reilly's formula)

$$\begin{split} &\int_{M} V\left((\Delta f)^{2} - |\nabla^{2} f|^{2}\right) \\ &= \int_{\Sigma} V\left[2\partial_{\nu} f \Delta_{\Sigma} f + H(\partial_{\nu} f)^{2} + h(\nabla_{\Sigma} f, \nabla_{\Sigma} f)\right] \\ &+ \int_{\Sigma} \partial_{\nu} V |\nabla_{\Sigma} f|^{2} + \int_{\Omega} \left(\nabla^{2} V - \Delta V g + V \operatorname{Ric}_{g}\right) (\nabla f, \nabla f). \end{split}$$

Proposition (Pohozaev's identity)

$$\begin{split} &\int_{M} \langle \nabla V, \nabla f \rangle \Delta f + \int_{M} (\nabla^{2} V - \frac{1}{2} \Delta V g) (\nabla f, \nabla f) \\ &= \int_{\Sigma} (\partial_{\nu} f \langle \nabla V, \nabla f \rangle - \frac{1}{2} |\nabla f|^{2} \partial_{\nu} V). \end{split}$$

18 / 30

Key choice of V:

•

$$V = \rho - \frac{c}{2}\rho^2$$
 where $\rho = \operatorname{dist}(\cdot, \Sigma)$.

- V>0 since $\rho \leq \frac{1}{c}$ (by only assuming $Ric \geq 0$ and $H\geq n-1$: M.Li '14)
- $V \in C^{0,1}(M)$ and $V \in C^{\infty}(M \setminus \operatorname{Cut}(\Sigma))$.
- V=0 and $\partial_{\nu}V=(1-c\rho)\partial_{\nu}\rho=-1$ on Σ .

• Hessian Comparison (Heintze-Karcher '78, Kasue '82): If $\operatorname{Sect}_g \geq 0$, $h \geq cg_{\Sigma} > 0$, then

$$\nabla^2 V \leq -cg$$
 on $M \setminus (\Sigma \cup \operatorname{Cut}(\Sigma))$.

• V is -c-concave in the sense of H.-H. Wu:

$$C(V)(x;Y) = \liminf_{r \to 0} \frac{V(\exp_x(rY)) + V(\exp_x(-rY)) - 2V(x)}{r^2}$$

 $\leq -c$

for any $x \in M$ and any $Y \in T_x M$ with |Y| = 1.

Proposition (Smooth approximation)

Fix a neighborhood $\mathcal C$ of $\operatorname{Cut}(\Sigma)$ in M. Then for any $\varepsilon>0$, there exists a smooth nonnegative function V_ε on M such that $V_\varepsilon=V$ on $M\setminus \mathcal C$ and

$$\nabla^2 V_{\varepsilon} \leq -(c-\varepsilon)g.$$

- Greene-Wu's Riemannian convolution V_{τ} for -c-concave function V in a small neighborhood O of $\mathrm{Cut}(\Sigma)$ is still -c-concave.
- Gluing the Riemannian convolution V_{τ} in O and V outside O by a cut-off function.
- $V_{\varepsilon} \geq 0$ on M.
- $V_{\varepsilon} = V = 0$ and $\partial_{\nu} V_{\varepsilon} = \partial_{\nu} V = -1$ on Σ .

Two integral identities. Let $f, V \in C^{\infty}(M)$.

Proposition (Qiu-X. '15, Weighted Reilly's formula)

$$\begin{split} &\int_{M} V\left((\Delta f)^{2} - |\nabla^{2} f|^{2}\right) \\ &= \int_{\Sigma} V\left[2\partial_{\nu} f \Delta_{\Sigma} f + H(\partial_{\nu} f)^{2} + h(\nabla_{\Sigma} f, \nabla_{\Sigma} f)\right] \\ &+ \int_{\Sigma} \partial_{\nu} V |\nabla_{\Sigma} f|^{2} + \int_{\Omega} \left(\nabla^{2} V - \Delta V g + V \operatorname{Ric}_{g}\right) (\nabla f, \nabla f). \end{split}$$

Proposition (Pohozaev's identity)

$$\begin{split} &\int_{M} \langle \nabla V, \nabla f \rangle \Delta f + \int_{M} (\nabla^{2} V - \frac{1}{2} \Delta V g) (\nabla f, \nabla f) \\ &= \int_{\Sigma} (\partial_{\nu} f \langle \nabla V, \nabla f \rangle - \frac{1}{2} |\nabla f|^{2} \partial_{\nu} V). \end{split}$$

- Let f is harmonic.
- ullet Use $V_arepsilon$ in Qiu-Xia's Reilly formula and Pohozaev's identity, we get

$$0 \geq \int_{\Sigma} - |
abla_{\Sigma} f|^2 + \int_{M} (
abla^2 V_{arepsilon} - \Delta V_{arepsilon} g) (
abla f,
abla f).$$

$$\int_{\Sigma} \frac{1}{2} |\nabla_{\Sigma} f|^2 - \frac{1}{2} (\partial_{\nu} f)^2 = \int_{\mathcal{M}} (\nabla^2 V_{\varepsilon} - \frac{1}{2} \Delta V_{\varepsilon} g) (\nabla f, \nabla f).$$

• Eliminating $\int_{\Sigma} |\nabla_{\Sigma} f|^2$, we have

$$\int_{\Sigma} (\partial_{\nu} f)^2 \geq - \int_{M} \nabla^2 V_{\varepsilon}(\nabla f, \nabla f) \geq (c - \varepsilon) \int_{M} |\nabla f|^2.$$

$$\int_{\Sigma} (\partial_{\nu} f)^2 \geq - \int_{M} \nabla^2 V_{\varepsilon}(\nabla f, \nabla f) \geq (c - \varepsilon) \int_{M} |\nabla f|^2.$$

• If f is first Steklov eigenvalue,

$$\int_{M} |\nabla f|^2 = \sigma_1 \int_{\Sigma} f^2$$

and

$$\partial_{\nu}f = \sigma_1 f$$
,

We conclude $\sigma_1 \geq c$.

Return to

$$0 \geq \int_{\Sigma} -|
abla_{\Sigma} f|^2 + \int_{M} (
abla^2 V_{arepsilon} - \Delta V_{arepsilon} g) (
abla f,
abla f).$$

• If *f* is harmonic extension of first boundary closed eigenfunction, then

$$\int_{\Sigma} |\nabla_{\Sigma} f|^2 = \lambda_1 \int_{\Sigma} f^2.$$

From Hessian comparison,

$$(\nabla^2 V_{\varepsilon} - \Delta V_{\varepsilon} g)(\nabla f, \nabla f) \geq (n-1)(c-\varepsilon)|\nabla f|^2.$$

Note $\int_{\Sigma} f = 0$, using variational characterization,

$$\sigma_1 \le \frac{\int_M |\nabla f|^2}{\int_{\Sigma} f^2} \le \frac{\lambda_1}{n-1}.$$

Let $\{\varphi_k\}$ be eigenfunctions corresponding to λ_k on Σ , forming an orthonormal basis of $L^2(\Sigma)$. Let f_k be harmonic extension of φ_k . Then using min-max variational characterization,

$$\begin{split} \sigma_{j} & \leq \sup_{\sum_{k=0}^{j} a_{k}^{2} = 1} \int_{\Omega} |\nabla(\sum_{k=0}^{j} a_{k} f_{k})|^{2} \\ & \leq \frac{1}{(n-1)c} \sup_{\sum_{k=0}^{j} a_{k}^{2} = 1} \int_{\Sigma} |\nabla_{\Sigma}(\sum_{k=0}^{j} a_{k} \varphi_{k})|^{2} \\ & = \frac{1}{(n-1)c} \sup_{\sum_{k=0}^{j} a_{k}^{2} = 1} \sum_{k=0}^{j} a_{k}^{2} \lambda_{k} \\ & \leq \frac{\lambda_{j}}{(n-1)c}. \end{split}$$

Equality characterization: Obata type theorem.

Proposition

Let (Ω, g) be an n-dimensional compact Riemannian manifold with boundary Σ such that

$$\mathrm{Ric}_{g} \geq 0$$
 in $\Omega, H \geq (n-1)c$ on Σ .

Assume there exists a nontrivial smooth function f satisfying

$$\nabla^2 f = 0 \text{ in } \Omega, \quad \partial_{\nu} f = cf \text{ on } \Sigma. \tag{1}$$

Then Ω is isometric to a Euclidean ball with radius 1/c.

 Without the curvature condition, there might be other manifolds admitting the solution to (1). Chen-Lai-Wang studied such Obata's theorem.

- An idea due to B. Andrews.
- Step 1: Let $N_t = \{x \in M, f(x) = t\}$, ∇f is Killing, M is product manifold $N_0 \times \mathbb{R}$.
- Step 2: Write Σ as graphs over N_0 , $\Sigma_{\pm} = \{(x, u_{\pm}) : x \in N_0\}$, $u_+ \geq 0, u_- \leq 0$, satisfying

$$\frac{1}{\sqrt{1+|\nabla u_{\pm}|^2}}=cu_{\pm}.$$

• Step 3: $\{x \in N_0 : u_+(x) = \frac{1}{c}\} = \{x_0\}$. By setting $T_\tau = \{x \in N_0 : \sqrt{1 - c^2 u_+^2} = c\tau\}$, one shows $\tau \leq \operatorname{dist}(x_0, T_\tau)$. In particular,

$$1/c \leq \operatorname{dist}(x_0, T_{1/c}) = \operatorname{dist}(x_0, \partial N_0)$$

which implies N_0 is an (n-1)-Euclidean ball with radius $\frac{1}{c}$.

• Step 4: Σ_{\pm} is a half-sphere on N_0 .

Open question

- Escobar's conjecture ($Ric_g \ge 0, \kappa_{\Sigma} \ge c > 0$)?
- Is it possible Escobar's conjecture true for $Ric_g \geq 0$, $H_{\Sigma} \geq c > 0$. Note that V satisfies Laplace comparison under this assumption.
- If $c \to 0$, then $\sigma_1 \ge c$ is trivial. How to estimate σ_1 by other geometric quantities, compare Li-Yau-Zhong-Yang's estimate: If $Ric_g \ge 0$ (with convex boundary), then

$$\lambda_1^N(M) \geq \frac{\pi^2}{d^2}, \quad d = \operatorname{diam}(M).$$

Equality only for $M = \mathbb{S}^1(r)$ or 1-dim interval.

Thank you for your attention!