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In this lecture, I will survey some recent results on bilinear Fourier

multiplier operators. Although most of the results are extended to the

case of multilinear pseudo-differential operators, I will restrict to the

bilinear case and to the case of Fourier multiplier operators.

The topics will be

1. Bilinear Fourier multipliers of Hörmander-Mihlin type

2. Multipliers of exotic class

3. Generalization of the bilinear exotic class

Some of the results are based on my joint works with Naohito Tomita

(Osaka Univ.) and Tomoya Kato (Gunma Univ.).



1. Bilinear Fourier multipliers of Hörmander-
Mihlin type

1-1. Bilinear Fourier multiplier operators

For σ ∈ L∞(Rn × Rn) and for f, g ∈ S(Rn), we define

Tσ(f, g)(x) =
∫
Rn×Rn

e2πix·(ξ+η)σ(ξ, η)f̂(ξ)ĝ(η) dξdη

=
∫
Rn×Rn

K(x− y, x− z)f(y)g(z) dydz, x ∈ Rn,

where ∧ denotes the Fourier transform and K is the inverse Fourier

transform of σ. The operator Tσ is called the bilinear Fourier multi-

plier operator and the function σ is called the multiplier.



If X,Y, Z are function spaces on Rn equipped with quasi-norms, and if

there exists a constant A such that

∥Tσ(f, g)∥Z ≤ A∥f∥X∥g∥Y
for all f ∈ S ∩X and all g ∈ S ∩ Y , then we write

Tσ : X × Y → Z.

The smallest constant A is denoted by ∥Tσ∥X×Y→Z.

If A is a class of multipliers, we denote by Op(A) the class of all

operators Tσ corresponding to σ ∈ A. If Tσ : X × Y → Z for all σ ∈ A,

then we write

Op(A) ⊂ B(X × Y → Z).



Example 1. Cauchy integral on a curve:∫
R

f(y)

x− y+ i(A(x)−A(y))
dy,

where A is a given function on R with A′ ∈ L∞(R).
If ∥A′∥L∞ is small,∫

R

f(y)

x− y+ i(A(x)−A(y))
dy =

∞∑
k=0

(−i)k
∫
R

(A(x)−A(y))k

(x− y)k+1
f(y)dy.

The term for k = 0 is the Hilbert transform.
The term for k = 1

CAf(x) =
∫
R

A(x)−A(y)

(x− y)2
f(y)dy

is called Calderón’s commutator.
If we write a = A′, then A(x)−A(y) =

∫ x
y a(t) dt and

CAf(x) =
∫
R×R

e2πix(ξ+η)m(ξ, η)f̂(ξ)â(η) dξdη,

where

m(ξ, η) = −πi
∫ 1

0
sign (ξ+ tη) dt



= −πi


0 if ξ ≤ 0, ξ+ η ≤ 0,

(ξ+ η)/η if ξ ≤ 0, ξ+ η > 0,

−ξ/η if ξ > 0, ξ+ η ≤ 0,

1 if ξ > 0, ξ+ η > 0.
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m is homogeneous of degree 0 and Lipschitz continuous in R2 \ {0}.



Example 2. For Ds(f) = (|ξ|sf̂ )∨, the inequality

∥Ds(fg)∥Lp ≲ ∥Dsf∥Lp∥g∥L∞ + ∥f∥L∞∥Dsg∥Lp, 1 < p <∞, (1)

is called the Kato-Ponce inequality.

To prove this inequality, notice that

Ds(fg) =
∫
Rn×Rn

e2πix·(ξ+η)|ξ+ η|s f̂(ξ)ĝ(η) dξdη.

Take functions Φ1(ξ, η) and Φ2(ξ, η) such that

Φ1,Φ2 ∈ C∞(R2n \ {0}),
Φ1 and Φ2 are homogeneous of degree 0,

ξ ̸= 0 on suppΦ1,

η ̸= 0 on suppΦ2,

Φ1 +Φ2 = 1 on R2n \ {0},

and write



Ds(fg)

=
∫
Rn×Rn

e2πix·(ξ+η)Φ1(ξ, η)
|ξ+ η|s

|ξ|s
(Dsf)∧(ξ)ĝ(η) dξdη

+
∫
Rn×Rn

e2πix·(ξ+η)Φ2(ξ, η)
|ξ+ η|s

|η|s
ĝ(η)(Dsg)∧(η) dξdη.

The Fourier multipliers

m1(ξ, η) = Φ1(ξ, η)
|ξ+ η|s

|ξ|s
, m2(ξ, η) = Φ2(ξ, η)

|ξ+ η|s

|η|s
,

are not smooth around ξ+ η = 0 if s is not an even integer.



The following is the most fundamental result on the boundedness of

bilinear Fourier multiplier operators.

Theorem A. (Coifman-Meyer 1978, Kenig-Stein 1999, Grafakos-

Kalton 2001) If

|∂α
ξ ∂

β
ηm(ξ, η)| ≤ Cα,β(|ξ| + |η|)−|α|−|β| (A-1)

for all α, β, then

Tm : Hp × Hq → Lr (A-2)

for all p, q, r ∈ (0,∞] satisfying 1/p+1/q = 1/r, where (A-2) should

be replaced by Tm : L∞ × L∞ → BMO when p = q = r = ∞.

Hp, p > 0, are the real Hardy spaces.

Recall that Hp = Lp if 1 < p ≤ ∞.

The condition (A-1) is sometimes called the Hörmander-Mihlin type

condition.



1-2. Nonsmooth multipliers of Hörmander-
Mihlin type

We want to refine Theorem A so that we require only limited differen-

tiability of m.

The first results in this direction was given by Tomita in 2010.

We use the function Ψ such that
Ψ ∈ C∞

0 (R2n), suppΨ ⊂ {ζ ∈ R2n | 2−1 ≤ |ζ| ≤ 2},∑
j∈Z

Ψ(ζ/2j) = 1 for all ζ ∈ R2n \ {0}.

For functions on R2n, we define the Sobolev norm by

∥G∥W s(R2n) = ∥(1 + |z|)sĜ(z)∥L2
z(R2n).



Theorem B. (Tomita 2010) If s > n, then

∥Tσ∥Lp×Lq→Lr ≲ sup
j∈Z

∥σ(2j·)Ψ(·)∥W s(R2n)

for all 1 < p, q, r < ∞ satisfying 1/p + 1/q = 1/r.

Grafakos-Si (2012) extended Tomita’s theorem to r ≤ 1 by using Lλ-

based Sobolev norm with 1 < λ ≤ 2.



We can refine Theorem B by using the product type Sobolev norm

∥G∥
W (s1,s2)((Rn)2) = ∥(1 + |z1|)s1(1 + |z2|)s2Ĝ(z1, z2)∥L2

z1,z2
((Rn)2).

Theorem C. (M.-Tomita 2013) Let 0 < p, q, r ≤ ∞ satisfy

1/p + 1/q = 1/r. If s1, s2 > n/2 and

s1 > n/p − n/2, s2 > n/q − n/2, s1 + s2 > n/p + n/q − n/2,

then

∥Tσ∥Hp×Hq→Lr ≲ sup
j∈Z

∥σ(2j(ξ, η))Ψ(ξ, η)∥
W (s1,s2)((Rn)2)

, (C-1)

where we replace Hp × Hq → Lr by L∞ × L∞ → BMO in the

case p = q = r = ∞. Conversely, if (C-1) holds with the same

replacement in the case p = q = r = ∞, then s1, s2 ≥ n/2 and

s1 ≥ n/p − n/2, s2 ≥ n/q − n/2, s1 + s2 ≥ n/p + n/q − n/2.



2. Multipliers of exotic class

2-1. Bilinear Hörmander class

Definition 1. For m ∈ R and 0 ≤ ρ ≤ 1, the class BS
⟨m⟩
ρ (Rn) is defined

to be the set of all σ(ξ, η) ∈ C∞(Rn × Rn) that satisfy∣∣∣∂αξ ∂βησ(ξ, η)∣∣∣ ≤ Cα,β(1 + |ξ|+ |η|)m−ρ(|α|+|β|).

This class BS
⟨m⟩
ρ (in a generalized form for symbols of bilinear pseudo-

differential operators) was introduced and studied by

Bényi-Maldonado-Naibo-Torres (2010),

Bényi-Bernicot-Maldonado-Naibo-Torres (2013),

Michalowski-Rule-Staubach (2014).



In the case ρ = 1, the class BS
⟨0⟩
1 (Rn) is the class of Hörmander-Mihlin

type multipliers, which are considered in Section 1. In this case, the

operators in the class Op(BS
⟨0⟩
1 ) have appropriate integral kernel and

covered by the bilinear Calderón-Zygmund theory given by Grafakos-

Torres (2002). The results are parallel to the linear case. In particular,

we have the following.

Theorem D. (⊂ Theorem A)

Op(BS
⟨0⟩
1 ) ⊂ B(Hp × Hq → Lr) for all 0 < p, q, r ≤ ∞ satisfying

1/p + 1/q = 1/r > 0. Also Op(BS
⟨0⟩
1 ) ⊂ B(L∞ × L∞ → BMO).

However, in the case 0 ≤ ρ < 1, the bilinear operators and the linear

operators have different features.

The class BS
⟨m⟩
ρ with 0 ≤ ρ < 1 is sometimes called the exotic class.



Recall the case of linear operators. The linear Fourier multiplier oper-

ator σ(D),

σ(D)f(x) =
∫
Rn
e2πix·ξσ(ξ)f̂(ξ) dξ, x ∈ Rn,

is bounded L2 → L2 if and only if σ ∈ L∞ (by Plancherel’s theorem).

Extension of this result to the linear pseudo-differential operators,

σ(X,D)f(x) =
∫
Rn
e2πix·ξσ(x, ξ)f̂(ξ) dξ, x ∈ Rn,

is the following well-known theorem.

Theorem E. (Calderón-Vaillancourt 1972) The linear pseudo

-differential operator σ(X,D) is bounded L2 → L2 if the symbol

σ satisfies
∣∣∂α

x∂
β
ξ σ(x, ξ)

∣∣ ≤ Cα,β.

Naive generalization of this theorem to the bilinear case fails.



Theorem F. (Bényi-Torres 2004) There exists a function σ =

σ(ξ, η) on Rn × Rn such that

|∂α
ξ ∂

β
ησ(ξ, η)| ≤ Cα,β

for all α, β, ( i.e., σ ∈ BS
⟨0⟩
0 (Rn) in our notation), and that Tσ is

not bounded from Lp ×Lq to Lr for any p, q, r ∈ [1,∞) satisfying

1/p + 1/q = 1/r.

This theorem says that the relation

Op(BS
⟨m⟩
0 (Rn)) ⊂ B(Lp × Lq → Lr)

holds only if m < 0.



2-2. Critial m for the exotic class

Definition 2. Let 0 ≤ ρ < 1, 0 < p, q ≤ ∞, and 1/p+ 1/q = 1/r. We

define

mρ(p, q) = sup{m ∈ R : Op(BS
⟨m⟩
ρ (Rn)) ⊂ B(Hp ×Hq → Lr)},

where Hp × Hq → Lr should be replaced by L∞ × L∞ → BMO in the

case p = q = r = ∞.

Theorem G. For 0 ≤ ρ < 1, 0 < p, q ≤ ∞, and 1/p + 1/q = 1/r.

Then mρ(p, q) = (1 − ρ)m0(p, q) and

m0(p, q) = −nmax

{
1

2
,
1

p
,
1

q
, 1 −

1

r
,
1

r
−

1

2

}
.

Notice that m0(p, q) ≤ −n/2 for all (p, q).
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m0(p, q) =



n/r − n if (1/p,1/q) ∈ J0,

−n/2 if (1/p,1/q) ∈ J1,

−n/q if (1/p,1/q) ∈ J2,

−n/p if (1/p,1/q) ∈ J3,

n/2− n/r if (1/p,1/q) ∈ J4.



The critical order mρ(p, q) were implicitly given in the works of several

authors. In particular, Boundedness for the case m < m0(p, q) were

given by

Michalowski-Rule-Staubach (2014): Op(BS
⟨m⟩
0 ) ⊂ B(L2×L2 → L1) for

m < −n/2 = m0(2,2),

and by

Bényi-Bernicot-Maldonado-Naibo-Torres (2013): Op(BS
⟨m⟩
0 ) ⊂ B(Lp×

Lq → Lr) for 1 ≤ p, q, r ≤ ∞, 1/p+1/q = 1/r, and m < m0(p, q).

Problem: how about the critical case m = mρ(p, q)?

Theorem H. (M.-Tomita 2013, Naibo 2015, M.-Tomita 2017,

2018) Let 0 ≤ ρ < 1, 0 < p, q, r ≤ ∞, 1/p + 1/q = 1/r, and

m = mρ(p, q). Then

Op(BS
⟨m⟩
ρ (Rn)) ⊂ B(Hp × Hq → Lr),

where Hp×Hq → Lr should be replaced by L∞×L∞ → BMO in

the case p = q = r = ∞.



3. Generalization of the bilinear exotic class

In this section, we shall mainly consider the boundedness of bilinear

Fourier multiplier operators on L2×L2, which is the most fundamental

estimate.

3-1. The class BSW0 (Rn) with general W

Recall the following theorem, which is a part of Theorem H.

Theorem I. (M.-Tomita 2013) If σ ∈ BS
⟨−n/2⟩
0 (Rn), i.e., if

|∂α
ξ ∂

β
ησ(ξ, η)| ≤ Cα,β(1 + |ξ| + |η|)−n/2,

then Tσ : L2 × L2 → L1. The exponent n/2 cannot be replaced

by a smaller number.



We shall show that the class BS
⟨−n/2⟩
0 (Rn) can be replaced by a wider

general class.

Definition 3. Let W be a nonnegative bounded function on Rn × Rn.
We define BSW0 (Rn) to be the set of all C∞ functions σ = σ(ξ, η) on

Rn × Rn such that ∣∣∣∂αξ ∂βησ(ξ, η)∣∣∣ ≤ Cα,βW (ξ, η)

for all multi-indices α, β. We call W the weight function.

Thus

BS
⟨−n/2⟩
0 (Rn) = BSW0 (Rn) with W (ξ, η) = (1+ |ξ|+ |η|)−n/2.



Definition 4. B(Zn × Zn) denotes the set of all nonnegative functions

V on Zn×Zn for which there exists a constant c ∈ (0,∞) such that the

inequality ∑
µ,ν∈Zn

V (µ, ν)A(µ+ ν)B(µ)C(ν)

≤ c∥A∥ℓ2(Zn)∥B∥ℓ2(Zn)∥C∥ℓ2(Zn)
holds for all nonnegative functions A,B,C on Zn.

Definition 5. For a nonnegative bounded function V on Zn × Zn, we

define the function Ṽ on Rn × Rn by

Ṽ (ξ, η) =
∑

µ,ν∈Zn
V (µ, ν)1Q(ξ − µ)1Q(η − ν),

where Q = (−1/2,1/2]n.



Theorem J. (Kato-M.-Tomita 2019) Let V and Ṽ be as above.

(1) If there exists an r ∈ (0,∞) such that

Op(BSṼ
0 (Rn)) ⊂ B(L2 × L2 → Lr), (2)

then V ∈ B(Zn × Zn).
(2) Conversely, if V ∈ B(Zn × Zn), then

Op(BSṼ
0 (Rn)) ⊂ B(L2 × L2 → Lr) for 1 ≤ r ≤ 2.

Thus, in particular,

V ∈ B(Zn × Zn)

⇔ Op(BSṼ
0 (Rn)) ⊂ B(L2 × L2 → L1)

⇔ Op(BSṼ
0 (Rn)) ⊂ B(L2 × L2 → Lr) for 1 ≤ r ≤ 2.



Theorem K. (Kato-M.-Tomita 2019)

(1) All nonnegative functions in the Lorentz class ℓ4,∞((Zn)2)
belong to B(Zn × Zn). In particular the function

V (µ, ν) = (1 + |µ| + |ν|)−n/2

belongs to B(Zn × Zn).
(2) If V1, V2 ∈ ℓ4,∞(Zn) are nonnegative, then the function V1(µ)V2(ν)

belongs to B(Zn × Zn). In particular the function

V (µ, ν) = (1 + |µ|)−n/4(1 + |ν|)−n/4

belongs to B(Zn × Zn).
(3) If V1,j, V2,j ∈ ℓ4,∞(Z) are nonnegative, j = 1, . . . , n, then the

function
n∏

j=1

V1,j(µj)V2,j(νj)belongs to B(Zn × Zn). In particular

the function

V (µ, ν) =
n∏

j=1

(1 + |µj|)−1/4(1 + |νj|)−1/4

belongs to B(Zn × Zn).



The following corollary follows from Theorem J with the weight func-

tion V (µ, ν) = (1+ |µ|)−n/4(1 + |ν|)−n/4.

Corollary 1. Op(BS
⟨0⟩
0 (Rn)) ⊂ B(Wn/4 × Wn/4 → L1 ∩ L2), where

Wn/4 = Wn/4(Rn) denotes the Sobolev space,

∥f∥
Wn/4(Rn)

= ∥(1 + |ξ|)n/4f̂(ξ)∥L2(Rn).



The next theorem can be proved by the use of Theorems J and K.

Theorem L. (Grafakos-He-Slav́ıková 2018, Kato-M.-Tomita 2019)

If |∂α
ξ ∂

β
ησ(ξ, η)| ≤ Cα,β for all α, β and if σ ∈ Lq(R2n) for some

q < 4, then the operator Tσ is bounded from L2 × L2 to L1 ∩ L2.

It is known that we cannot take q = 4 in the above theorem.

Theorem M. (Slav́ıková 2019) The assertion of Theorem L does

not hold for q = 4, i.e., there exists a σ ∈ C∞(Rn × Rn) such

that ∂α
ξ ∂

β
ησ(ξ, η) ∈ L∞(R2n) for all α, β and σ ∈ L4(R2n) and

the corresponding bilinear Fourier multiplier operator Tσ is not

bounded from L2 × L2 to L1.



3-2. The amalgam space

One of the ideas to prove Theorem J was to use the amalgam norm,

which is defined as follows.

Definition 6. For 0 < q ≤ ∞ and for measurable functions f on Rn,
the amalgam norm is defined by

∥f∥(L2,ℓq) =

( ∑
ν∈Zn

∥f(x+ ν)∥q
L2
x(Q)

)1/q
with the usual modification in the case q = ∞, where Q = (−1/2,1/2]n.

The class of all f with ∥f∥(L2,ℓq) < ∞ is defined to be the amalgam

space (L2, ℓq) = (L2, ℓq)(Rn).

Proposition 1.

(L2, ℓq) ⊃ Lq if 2 ≤ q ≤ ∞,

(L2, ℓq) ⊂ Lq if 0 < q ≤ 2.



Theorem N. (Kato-M.-Tomita 2019)

(1) If there exist 0 < p, q, r ≤ ∞ such that

Op(BSṼ
0 (Rn)) ⊂ B

(
(L2, ℓp) × (L2, ℓq) → (L2, ℓr)

)
, (N-1)

then V ∈ B(Zn × Zn).
(2) Conversely, if V ∈ B(Zn × Zn), then (N-1) holds for all

0 < p, q, r ≤ ∞ satisfying 1/p + 1/q ≥ 1/r.

Summarizing Theorems J and N, we have

V ∈ B(Zn × Zn)

⇔ Op(BSṼ
0 (Rn)) ⊂ B(L2 × L2 → L1)

⇔ Op(BSṼ
0 (Rn)) ⊂ B(L2 × L2 → Lr) for 1 ≤ r ≤ 2.

⇔ Op(BSṼ
0 (Rn)) ⊂ B

(
(L2, ℓp) × (L2, ℓq) → (L2, ℓr)

)
for 0 < p, q, r ≤ ∞, 1/p + 1/q ≥ 1/r.



3-3. Proof of Theorem J (1)

Let V be a nonnegative bounded function on Zn×Zn and 0 < r <∞. We

assume Op(BSṼ0 ) ⊂ B(L2 × L2 → Lr). We shall prove V ∈ B(Zn × Zn),
i.e., ∑

µ,ν∈Zn
V (µ, ν)A(µ+ ν)B(µ)C(ν)

≤ c∥A∥ℓ2(Zn)∥B∥ℓ2(Zn)∥C∥ℓ2(Zn)
for all nonnegative functions A,B,C ∈ ℓ2(Zn).

Notice that, by the closed graph theorem, our assumption implies that

there exist a positive integer M and a positive constant c such that

∥Tσ∥L2×L2→Lr ≤ c max
|α|,|β|≤M

∥∥∥Ṽ (ξ, η)−1∂αξ ∂
β
ησ(ξ, η)

∥∥∥
L∞

for all bounded smooth functions σ on (Rn)2.



Take φ, φ̃ ∈ S(Rn) such that

supp φ̃ ⊂ [−1/2,1/2]n, φ̃ = 1 on [−1/4,1/4]n,

suppφ ⊂ [−1/4,1/4]n, |F−1φ| ≥ 1 on [−1/2,1/2]n.

Let {ϵk} be a sequence such that ϵk = ±1. Consider the multiplier

m(ξ, η) =
∑

µ,ν∈Zn
ϵµ+νV (µ, ν)φ̃(ξ − µ)φ̃(η − ν).

Then

|∂αξ ∂
β
ηm(ξ, η)| ≤ Cα,βṼ (ξ, η)

with Cα,β independent of the sequence {ϵk}.

We define f, g ∈ S(Rn) by

f̂(ξ) =
∑
µ∈Zn

B(µ)φ(ξ − µ),

ĝ(η) =
∑
ν∈Zn

C(ν)φ(η − ν).

Then ∥f∥L2 ≈ ∥B∥ℓ2 and ∥g∥L2 ≈ ∥C∥ℓ2.



From the situation of the supports of φ and φ̃, we have

Tm(f, g)(x) =
∑

µ,ν∈Zn
ϵµ+νV (µ, ν)B(µ)C(ν)e2πi(µ+ν)·xF−1φ(x)2

=
∑
k

ϵkdke
2πik·xF−1φ(x)2

with

dk =
∑

µ+ν=k

V (µ, ν)B(µ)C(ν).

Our assumption implies

∥Tm(f, g)∥Lr ≲ ∥f∥L2∥g∥L2 ≈ ∥B∥ℓ2∥C∥ℓ2.

We have

∥Tm(f, g)∥rLr ≥
∫
[−1/2,1/2]n

∣∣∣∣∣∑
k

ϵkdke
2πik·x

∣∣∣∣∣
r

dx.

Hence ∫
[−1/2,1/2]n

∣∣∣∣∣∑
k

ϵkdke
2πik·x

∣∣∣∣∣
r

dx ≲
(
∥B∥ℓ2∥C∥ℓ2

)r
. (3)



Notice that the implicit constant in (3) does not depend on {ϵk}.

We take the average over all choices of ϵk = ±1. Then Khintchine’s

inequality yields(∑
k

|dk|2
)r/2

=

∥∥∥∥∥ ∑
µ+ν=k

V (µ, ν)B(µ)C(ν)

∥∥∥∥∥
r

ℓ2k

≲
(
∥B∥ℓ2∥C∥ℓ2

)r
,

which is equivalent to the desired inequality.



3-4. Proof of Theorem J (2)

We assume V ∈ B(Zn × Zn) and define Ṽ on Rn × Rn by

Ṽ (ξ, η) =
∑

µ,ν∈Zn
V (µ, ν)1Q(ξ − µ)1Q(η − ν),

where Q = (−1/2,1/2]n. We assume σ ∈ BSṼ0 (Rn) and prove Tσ :

L2 × L2 → (L2, ℓ1).

It can be shown that there exists a function W on Rn × Rn such that

W (ξ)(1 + |η|)−M ≲W (ξ+ η) ≲W (ξ)(1 + |η|)M

for some M ∈ (0,∞) and

W |Zn×Zn ∈ B(Zn × Zn), Ṽ (ξ) ≤W (ξ).

We shall use this function W instead of Ṽ .

Our assumption implies that σ ∈ BSW0 (Rn).



We take the usual Littlewood-Paley functions {ψk}k∈N∪{0}, which are

defined as follows. Take a function ψ such that
ψ ∈ C∞

0 (Rn), suppψ ⊂ {ξ ∈ Rn | 2−1 ≤ |ξ| ≤ 2},∑
j∈Z

ψ(ξ/2j) = 1 for all ξ ∈ Rn \ {0},

and define

ψk(ξ) = ψ(ξ/2k), k = 1,2, . . . ,

ψ0(ξ) = 1−
∞∑
k=1

ψk(ξ).



We decompose σ as

σ(ξ, η) =
∑

k1,k2∈N∪{0}
ψk1

(
Dξ
)
ψk2

(
Dη
)
σ(ξ, η)

=
∑

k1,k2∈N∪{0}
σk1,k2(ξ, η),

where

σk1,k2(ξ, η) = ψk1

(
Dξ
)
ψk2

(
Dη
)
σ(ξ, η)

=
∫
Rn×Rn

e2πi(ξ·z1+η·z2)ψk1(z1)ψk2(z2)σ̂(z1, z2) dz1dz2.

Then

supp
(
σk1,k2

)∧
⊂ {(z1, z2) ∈ (Rn)2 | |z1| ≤ 2k1+1, |z2| ≤ 2k2+1}

and, by virtue of the moderate behavior of W ,∥∥∥W (ξ, η)−1σk1,k2(x, ξ, η)
∥∥∥
L∞((Rn)2)

≲ 2−(k1+k2)N ,

where N > 0 can be taken arbitrarily large.



The following proposition is the essential part of the proof.

Proposition 2. Suppose τ is a bounded continuous function on

(Rn)2 such that

supp τ̂ ⊂ {(z1, z2) ∈ (Rn)2 | |z1| ≤ 2k1, |z2| ≤ 2k2}

with k1, k2 ∈ N ∪ {0}. Then

∥Tτ∥L2×L2→(L2,ℓ1) ≲ 2(k1+kn)n/2
∥∥W (ξ, η)−1τ (ξ, η)

∥∥
L∞((Rn)2).

Applying this proposition to τ = σk1,k2 and taking sum over

k1, k2 ∈ N ∪ {0}, we conclude that ∥Tσ∥L2×L2→(L2,ℓ1) <∞.

In the proof of Proposition 2, we used some ideas of Boulkhemair

1995, who considered sharp L2 estimates for linear pseudo-differential

operators.



3-5. Proof of ℓ4,∞(Z2n) ⊂ B(Zn × Zn)

By appropriately extending functions on Zn and Zn × Zn to functions

on Rn and Rn × Rn, it is sufficient to prove the continuous version∫
Rn×Rn

V (x, y)A(x+ y)B(x)C(y) dxdy

≲ ∥V ∥L4,∞(Rn×Rn)∥A∥L2(Rn)∥B∥L2(Rn)∥C∥L2(Rn)

(4)

for nonnegative functions V,A,B,C ∈ L2(Rn).

It is known that the inequality∫
Rn×Rn

V (x, y)A(x+ y)B(x)C(y) dxdy

≲ ∥V ∥Lq0(Rn×Rn)∥A∥Lq1(Rn)∥B∥Lq2(Rn)∥C∥Lq3(Rn)
holds if and only if

2

q0
+

1

q1
+

1

q2
+

1

q3
= 2,

0 ≤
1

qi
≤ 1−

1

q0
≤ 1, i = 1,2,3.



By the real interpolation for multilinear operators (S. Janson), it follows

that the inequality∫
Rn×Rn

V (x, y)A(x+ y)B(x)C(y) dxdy

≲ ∥V ∥Lq0,r0(R2n)∥A∥Lq1,r1(Rn)∥B∥Lq2,r2(Rn)∥C∥Lq3,r3(Rn)
(5)

holds if

2

q0
+

1

q1
+

1

q2
+

1

q3
= 2,

0 <
1

qi
< 1−

1

q0
< 1, i = 1,2,3,

1

r0
+

1

r1
+

1

r2
+

1

r3
= 1.

In particular, by taking q0 = 4, q1 = q2 = q3 = 2, r0 = r1 = ∞, and

r2 = r3 = 2, we obtain∫
Rn×Rn

V (x, y)A(x+ y)B(x)C(y) dxdy

≲ ∥V ∥L4,∞(Rn×Rn)∥A∥L2,∞(Rn)∥B∥L2(Rn)∥C∥L2(Rn),

which a fortiori implies the desired inequality (4).
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