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and equality holds if and only if ax = 7*/k for some v € C with
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This is well known in the community of univalent functions, in
particular in connection with Rieberbach coniectiire
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Question: Any similar inequalities in higher dimensions?



QOutline

New Sharp
Inequalities in
Analysis and

Geometry

Aubin-Onofri Inequality

Aubin-Onofri
Inequality



Trudinger-Moser Inequality (1967, 1971)

New Sharp
Inequalities in
Analysis and

Geometry

Changfeng

Gui

Let S be the unit sphere and for u € H'(S?).

(07

Aubin-Onofri Ja(u) — / |Vu|2dw +/ wa - |Og/ eudw Z C > _OO,
2 s? 2

Inequality 4

if and only if a > 1, where the volume form dw is normalized
so that [ dw = 1.
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for

ve M :={uec H(5?): /e”x,-:O, i=1,2,3},
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Chang and Yang Conjecture (1987)

Chang and Yang showed that for « close to 1 the best constant
again is equal to zero.

They proposed the following conjecture.

Conjecture A. For o > %

inf J,(u) =0.
uIGnMJ(U) 0

Indeed, they showed that the minimizer u exists and satisfies
the Euler-Lagrange equations

o 2
*A fsg e“d ZMIXI , on 5. (4)

and
wi=0, i=1273.
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[0 e
—Au+-———1=0 s 5
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For general functions, to show solutions to (3) are axially
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1_9) v m
/ (14 [y De'dy = = (8)
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Conjecture B.

For 0 < /< 2, solutions to (9) and (10) must be radially
symmetric.

Note

/:2(&-1):2(8%—1)
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The following general symmetry result is proven.

Proposition
A Assume that K(y) = k(|y|) > 0 satisfies (K1) — (K2), and u is a

Inequality

solution to (11)-(12) with |+ 1 < 8 < 4. Then u must be
radially symmetric.
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Changfeng
it Let Q be a simply connected subset of R> and assume

w; € C3(Q), i = 1,2 satisfy
Aw;+ e = fi(y), (13)

- where fr > f1 > 0 in Q.
phere
Covering Suppose wy > wy in Q and wy = wy on X, then

Inequality

/ e"t 4+ e"dy > 8. (14)
Q

Furthermore if f # 0 or f, # fi in Q, then [, " + e"2dy > 8.
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Suppose Q C R?, then
[2(0Q) > 47A(Q)

Sphere Equality holds if and only if Q is a disk.

Covering
Inequality
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Levy's Isoperimetric inequalities on spheres (1919)
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On the standard unit sphere with the metric induced from the
Changfeng . 3
@ flat metric of R?,

L2(09Q) > A(Q) (47 — A(Q))

If the sphere has radius R, then

Sphere
Covering

inequality [2(8Q) > A(Q) (47R* — A(Q)) /R

L2(09) > A(Q) (47 — A(Q)/R?)



Alexandrov-Bol's inequality (1941)
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In general, we can identify a sphere with R? by a stereographic
projection, and equip it with a metric conformal to the flat
metric of R? i.e., ds? = ezv(dxf + dx%)
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In general, we can identify a sphere with R? by a stereographic
projection, and equip it with a metric conformal to the flat
metric of R? i.e., ds? = ezv(dxf + dx%)

Assume v satisfies

Changfeng
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Av+ K(x)e?' =0, R2

Sphere
Cavarii with the gaussian curvature K < 1.

Inequality



Alexandrov-Bol's inequality (1941)
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In general, we can identify a sphere with R? by a stereographic
projection, and equip it with a metric conformal to the flat
metric of R? i.e., ds? = ezv(dxf + dx%)

Assume v satisfies

Changfeng

Gui

Av+ K(x)e?' =0, R2

Sphere
Cavarii with the gaussian curvature K < 1.

Inequality
Then
(/ e'ds)? > (/ e?) (4r —/ e?)
o0 Q Q
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Logrithemic Determinants and Conformal

Geometry
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Analysis and Given a Riemanian surface (M, 0g) with Gaussian curvature Ky

je:mft:y and normalized area |M| = 1. Consider a conformal metric on
ST o = %Y on M.

If OM = (), define

1
F(u):2/M|Vou|2dA0+/MKoudAo—WX(M)In(/Mez“dAO).
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Logrithemic Determinants and Conformal

Geometry

New Sharp
Inequalities in

Analysis and Given a Riemanian surface (M, 0g) with Gaussian curvature Ky

Ccle:m(:t:y and normalized area |M| = 1. Consider a conformal metric on
Gui o=¢e* on M.

If OM = (), define

1
F(u):2/M|Vou|2dA0+/MKoudAo—WX(M)In(/Mez“dAO).

If OM consists of nice boundary with geodesic curvature kg,
il assume that (M, 0¢) and (M, o) are flat. Define

Determinants

1
Flu) = / u@dso +/ koudsy — 2 x (M) In(/ edsp).
2 oM 8n oM OM
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B. Osgood, R. Phillips and P. Sarnak. (1988):

Det(A;) 1 1 du

lo il
gDet( 0'0) 67T (U)+47T 8/\//8’7
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B. Osgood, R. Phillips and P. Sarnak. (1988):

Det(A;) 1 1 Oou

lo J—
gDet( 0'0) 67T (U)+47T 8/\//8’7

Maximizing log Det(A,) is equivalent to minimizing F.
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B. Osgood, R. Phillips and P. Sarnak. (1988):

Det(A;) 1 1 Oou

lo J—
gDet( 0'0) 67T (U)+47T 8/\//8’7

Maximizing log Det(A,) is equivalent to minimizing F.

Uniformization, Isospectral Properties, etc.

Logrithemic

Determinants



Widom's observation (1988), Chang-Hang (2019)
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Widom's observation (1988), Chang-Hang (2019)

New Sharp If fsl eikeeude = 07 —n S k S n, then

Inequalities in

Agalysis and 1 1 1 )
eometry
log(=— “df) — — df < —— 16
Clmggfffng 0g(27r/51 € d9) 27T/51 4 - 47r(n + 1)||VU||L2(D) ( )

Chang-Hang showed:
Let

P, = {all polynomials in R3 with degree at most n}.
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Widom's observation (1988), Chang-Hang (2019)
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Gui

Chang-Hang showed:
Let

P, = {all polynomials in R3 with degree at most n}.

e If [ €'p(x)dw = 0,VYp € Py, then for any € > 0 there exist
AN () € Z and C,(e) € R such that

Ji (u) > Cy(e) > —o0, Vue H'(S?).

N(n)
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Chang-Hang showed:
Let

P, = {all polynomials in R3 with degree at most n}.

e If [ €'p(x)dw = 0,VYp € Py, then for any € > 0 there exist
AN () € Z and C,(e) € R such that

Ji (u) > Cy(e) > —o0, Vue H'(S?).

N(n)

Here, N(1) =2, N(2) = 4 and (| 2] +1)®> < N(n) < n(n+1)




Widom's observation (1988), Chang-Hang (2019)

New S_‘h_arp_ If 1 eikgeude = 07 —n S k S n, then

Inequal!tles in S

o . et — o [ udb < TS IVul, (19)
— - — ———||Vu

Changfeng Og 27T St € 27T Sl Y - 47T(n + 1) LQ(D)
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Chang-Hang showed:
Let

P, = {all polynomials in R3 with degree at most n}.

e If [ €'p(x)dw = 0,VYp € Py, then for any € > 0 there exist
AN () € Z and C,(e) € R such that

Ji (u) > Cy(e) > —o0, Vue H'(S?).

N(n)

Here, N(1) =2, N(2) = 4 and (| 2] +1)®> < N(n) < n(n+1)

(67

Jo(u) = = / |Vul2dw + / udw — log / e'dw,

N




QOutline

New Sharp
Inequalities in
Analysis and

Geometry

New Inequality NeW Inequality



A Variant of Aubin-Onofri Inequality, Alice Chang

and G., 2019

New Sharp Let us consider the following functionals in H'(S?):

Inequalities in
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Geometry )
Changfeng IOé(u) =« ‘VU‘ dw + 2 wa
Gui S2 32
1 3
-5 log[(/ &dw)? — (/ e?Ux;dw)?].
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A Variant of Aubin-Onofri Inequality, Alice Chang

and G., 2019

New Sharp Let us consider the following functionals in H!(S?):

Inequalities in
Analysis and

Geometry )
Changfeng Ia(u) =« ‘VU‘ dw + 2 wa
Gui s? s?
1 3
-5 log[(/ &dw)? — (/ e?Ux;dw)?].
2 loell 2.0,

Theorem (Chang and G., 2019)

For any a > 1/2, we have

New Inequality Ia(u) 2 (a - 2/3)/ |VU|2dw’ Vu € Hl(Sz) (17)
S?



A Variant of Aubin-Onofri Inequality, Alice Chang

and G., 2019

New Sharp Let us consider the following functionals in H!(S?):

Inequalities in
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Changfons lh(u)=a | |Vul"dv+2 | udw
Gui s? s?
1 3
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2 ® ; s

Theorem (Chang and G., 2019)

For any a > 1/2, we have

New Inequality Ia(u) 2 (a - 2/3)/ |VU|2dw’ Vu € Hl(Sz) (17)
$?

In particular, when o > 2/3 we have I,(u) >0, VYue& H'(S?)



A Variant of Aubin-Onofri Inequality, Alice Chang

and G., 2019

New Sharp Let us consider the following functionals in H!(S?):

Inequalities in
Analysis and

Geometry 2
Changfons lh(u)=a | |Vul"dv+2 | udw
Gui s? s?
1 3
—= Iog[(/ edw)? — (/ e?Ux;dw)?].

2 ® ; s

Theorem (Chang and G., 2019)

For any a > 1/2, we have

New Inequality Ia(u) 2 (a - 2/3)/ |VU|2dw’ Vu € Hl(Sz) (17)
$?

In particular, when o > 2/3 we have I,(u) >0, VYue& H'(S?)
But I, is NOT bounded below in H*(S?) for a < 2/3.



Euler-Lagrange Equation
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a,-:/ & Uxidw, i=1,2,3.
$2

H={ue H(S): /52 ey — 1. (19)

Define

New Inequality



Euler-Lagrange Equation
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Changfeng aj = / e X,dw i= 1, 2, 3
2

Gui

Define
H={uec H(S?): / e?ldw = 1}. (19)
2

Proposition

The Euler Lagrange equation for the functional I, in H is

3
New Inequality aAu + M 2u ]_ = O on 52 (20)
- ZI 1 I



Existence and Nonexistence of Solutions
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Proposition

i ) When o € [3,1) and o # 3, equation (20) has only
constant solutions;

i) When oo = % for any 3 = (a1, az, a3) € By, there is a unique
solution u to equation (20) in H such that (18) holds.

New Inequality
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Proposition

i ) When o € [3,1) and o # 3, equation (20) has only
constant solutions;

i) When oo = % for any 3 = (a1, az, a3) € By, there is a unique
solution u to equation (20) in H such that (18) holds.

In particular, u is axially symmetric about 3 if 3 # (0,0,0).

New Inequality



Existence and Nonexistence of Solutions
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Proposition

i ) When o € [3,1) and o # 3, equation (20) has only
constant solutions;

i) When oo = % for any 3 = (a1, az, a3) € By, there is a unique
solution u to equation (20) in H such that (18) holds.

In particular, u is axially symmetric about 3 if 3 # (0,0,0).
After a proper rotation, the solution u is explicitly given by the
formula in (26) below.

New Inequality



Kazdan-Warner condition
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For the Gaussian curvature equation:
Au+ K(x)e* =1 on S°, (21)

we have
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Kazdan-Warner condition

New Sharp
Inequalities in
Analysis and

Geometry

Changfeng
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For the Gaussian curvature equation:

Au+ K(x)e* =1 on S°, (21)

we have

/SQ(VK(X) - Vxj)e*dw = 0 for each j= 1,2, 3. (22)

New Inequality



Stereographic Project

e Siep For a = 2, we assume that (a1, a2, a3) = (0,0, a) with

Inequalities in

Analysis and ace (0’ 1) and ConSideI’

Geometry

Changfeng

2 1-—
Gui - A u + aX3

3 =2 e'—1=0 on S (23)
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Stereographic Project

B For o = % we assume that (aj, a2, a3) = (0,0, a) with
Rl ac< (0,1) and consider
Geometry
Changfeng 2 1 - aX3 2 2
Guil —Au—+ e!—1=0 on 5. 23
3 1— a2 (23)

Use the stereographic projection to transform the equation to
be on R?. Let

w(y) = u(N7(y)) (1+1y?) for ye R

— —1In
2

New Inequality
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Stereographic Project

For a = £, we assume that (a1, a2, a3) = (0,0, a) with
a € (0,1) and consider

2 1-—
—Au+ PS2u_1-0 on . (23)

3 1-— a2
Use the stereographic projection to transform the equation to
be on R?. Let

wly) = o) — 2 (1 + yP) for ye B

Then w satisfies

Aw+ lia(zﬁ Y)Y =0 in R (24)

where b2:%:>1,b>0and
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New Inequality

Stereographic Project

For a = 2, we assume that (a1, a2, a3) = (0,0, a) with

a € (0,1) and consider

2 1-—
—Au+ PS2u_1-0 on . (23)

3 1-— a2
Use the stereographic projection to transform the equation to
be on R?. Let

wly) = o) — 2 (1 + yP) for ye B

Then w satisfies

Aw+ lia(zﬁ Y)Y =0 in R (24)

where b2:%:>1,b>0and

/R (B + )y = (1+ o). (25)



Exact Solution

New Sharp
Inequalities in
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e Now it is easy to verify directly that

2
14+ b2

is a solution to (24) and (25), and hence u(x) defined by

1
w(y) = —g In(6* + |y*) +2In b+ 5 In

_ 3, 14|y
u(x) = u(N 1(y)) ::|nb2+||);‘|2+2| b+f|n [y (26)

W is a solution to (23).



Symmetry and Uniqueness of Solutions

e Sl Use symmetry result of G.-Moradifam (2018) and uniqueness

Inequalities in

SRl result of C.S. Lin (2000) on axially symmetric solutions, we

Geometry
Chanafens know that the solution above is a unique solution.
Gui Define

Ua,b(X) = Ua,b(nil(JV)) =

«

1 n 1+ |y
b2 + |y|2

1
+2|nb+§|n

New Inequality
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New Inequality

Symmetry and Uniqueness of Solutions

Use symmetry result of G.-Moradifam (2018) and uniqueness
result of C.S. Lin (2000) on axially symmetric solutions, we
know that the solution above is a unique solution.

Define

_ I 14|y 1 2
Uo p(X) = tap(M7(y)) := o In b2—|—||};/|]2 +2Inb+ 5 In T B
(27)

Direct computations show that

liMp_yoo Io(Ua,p) = —00, ifa< %

limp—yo0 la(a,p) = 00, if > %

/%(U%b)zo, Vb >0
Indeed,
1
Uy3(x) = —=1In(1—3a-x)+In(1— 13)%), xe§°

Q



Challenge: Compactness?
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It is NOT clear if the minimum is attained and a minimizer
exists!
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Challenge: Compactness?

New Sharp
Inequalities in
Analysis and

Geometry

It is NOT clear if the minimum is attained and a minimizer
exists!

The compactness of the minimizing sequence is NOT known.

New Inequality



A Constrained Minimization Problem and

Compactness

Wl For any 3 — (a1, a2, a3) € By := {|a] < 1} C R?, let us define

Analysis and

Geometry

SO A= {uc H(S?) / Pixi— a i=1,2,3}H. (28)
s2

Gui

New Inequality



A Constrained Minimization Problem and

Compactness

New Sharp - .
IS For any 3 = (a1, 2, a3) € By := {|a] <1} C R?, let us define
Analysis and

Geometry

SO A= {uc H(S?) / Pixi = i=1,2,3}H. (28)
s2

Gui
We consider a constrained minimizing problem on M3 :

min I, (u).

ueEMs

New Inequality



A Constrained Minimization Problem and

Compactness

New Sharp

Inequalities in For any 5: (31, 32, 33) S B]_ = {|a| < 1} C Rz, Iet us deﬁne

Analysis and

Geometry

O A= (uc H(S): /52 Pixi— 2, i=1,2,3)NH. (28)
We consider a constrained minimizing problem on M3 :

in Iy(u).
Jmin lo(4)

and recall the following compactness result:

Proposition

EEERY  For any o > %, 3 = (a1, a2, a3) € By, there exists C, 5 € R such
that

lo(u) > Co 3, Yue M; (29)



E-L Equation of the constrained problem

NMewy S It is standard to show that there exists a minimizer u, 3 € M3

Inequalities in

Analysis and Of (28) Sat|sfy|ng

Geometry

Changfeng

Gui

3
alu+ eY(p — Z Bix) =1, xe & (30)
i=1

for some p € R and 3 = (B1, B2, B3) € R with

New Inequality
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3
alu+ eY(p — Z Bix) =1, xe & (30)
i=1

for some p € R and 3 = (B1, B2, B3) € R with

3
p=1+ Z Biai.
i=1
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E-L Equation of the constrained problem

NMewy S It is standard to show that there exists a minimizer u, 3 € M3
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Changfeng
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3
alu+ e(p — Z Bix)=1, xe§? (30)

for some p € R and 3 = (B1, B2, B3) € R with

3
p=1+ Z Biai.
i=1

Luckily for o = 3 B = j=1,2,3. Then (30) is

J
1— |a|2a

New Inequality

equivalent to (20) and



E-L Equation of the constrained problem

NMewy S It is standard to show that there exists a minimizer u, 3 € M3
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3
alu+ e(p — Z Bix)=1, xe§? (30)

for some p € R and 3 = (B1, B2, B3) € R with

3
p=1+ Z Biai.
i=1

Luckily for o = 3 B = j=1,2,3. Then (30) is

J
1— |a|2a

New Inequality

equivalent to (20) and

min l2(u) =1

3 2 7|a
ueMs;z 3 3° 3
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Changfeng Rotate the coordinates properly so that 81 = 8> = 0. Without
loss of generality, we assume that 83 > 0.
We can obtain

a3 2(X —1)az | 12

- < <a7 f _ 3]_

_gshsT T fecpgl B
and

as 2(; — Vas . 2

2 > py>a T e[S 32

1_a§_ﬁ3_ 1= if [3 ] (32)
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Difference: Equation on R?

018 - 1. Set

p—B3
1+ + om0y

Mz S Let b be a positive constant with b?> =

Inequalities in
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Changfeng Wa,i(y) = ua,s(n_l(y)) - ln
Gui «
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Difference: Equation on R?

018 - 1. Set

p—B3
1+ + om0y

Mz S Let b be a positive constant with b?> =

Inequalities in
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Geometry

Changfeng Wa,i(y) = ua,s(n_l(y)) - ln
Gui «

Then w, 5 satisfies

Aw+ k(]y])e®" =0 in R2 (33)
and ) )
— [ k(ly))ewdy = = 34
27 Jro (Iye™dy =~ (34)
where

K(lyl) == (B + y2)(1 + [1)= 2.
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Difference: Equation on R?

Mz S Let b be a positive constant with b* = oiBs 5 1 Set

Inequalities in P—/B?,
Analysis and

Geometry _ 1 1 4 p— 63
R ) = ) - D)+ )
Gui « «
Then w, 5 satisfies
Aw+ k(|y))e¥” =0 in R? (33)
and ) )
— | k Wy = = 34
o [ Ky == (34)
where

K(lyl) == (B + y2)(1 + [1?)a 2

New Inequality

When 1 < a < 2, t k(|y]) satisfies (K1) — (K2) with /= 2 —2.
By G.-Moradifam (2018), w,, 5(y) must be radially symmetrlc
and hence u, 5(y) must be axially symmetric and a; = a» = 0.



Estimate of the minimum m(a, a) of J, on M,.
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Changfeng There hO/d pOIntWIse in ac [O, 1)

Gui

(% —3)In(1—2a%), ac(1/2,2/3),

a(é - g) n(l—2), aec(2/3,1).

m(a, a) > (35)

and
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(% —3)In(1—2a%), ac(1/2,2/3),

a(é - g) n(l—2), aec(2/3,1).

m(a, a) > (35)

and

(2 _3)In(1—22), ac(2/3,1),

e (sl <
0L 31— 2) — 2(n(1 + 2) — 3)), Vae (1/2,1).

2a a2
(36)
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Some Technique Questions

New Sharp

Inequalities in . .
Analysis and 1). Should u, 3(y) always be axially symmetric for all
Geometry 1 ’ -
. a€(3,1)and € B?
Gui 2). Is the minimizer u, 3(y) unique determined? In particular,

is 8 uniquely determined? We know that if 3 is uniquely
determined by « and 3, then the axially symmetric solution

U, 3(y) is unique.

New Inequality



Some Technique Questions

New Sharp
Inequalities in

Analysis and 1). Should u, 5(y) always be axially symmetric for all
Geometry 1 =
R a€(3,1)and € B?

Gui 2). Is the minimizer u, 3(y) unique determined? In particular,
is 8 uniquely determined? We know that if 3 is uniquely
determined by « and 3, then the axially symmetric solution
U, 3(y) is unique.

3) Fixed o € (3,1),3 € By, for any given

B = B33/|3,0 < B3 < %m,p = 1+ [33]d], there is a unique
axially symmetric solution u to (30) with the corresponding w
solving (33) and (34).
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Some Technique Questions

New Sharp
Inequalities in

Analysis and 1). Should u, 5(y) always be axially symmetric for all
Geometry 1 =
R a€(3,1)and € B?

Gui 2). Is the minimizer u, 3(y) unique determined? In particular,
is 8 uniquely determined? We know that if 3 is uniquely
determined by « and 3, then the axially symmetric solution
U, 3(y) is unique.

3) Fixed o € (3,1),3 € By, for any given

B = B33/|3,0 < B3 < %m,p = 1+ [33]d], there is a unique
axially symmetric solution u to (30) with the corresponding w
solving (33) and (34).

4) Can we compute or estimate more accurately

New Inequality

m(a, 8) = ly(uy.3)?
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