The Asia-Pacific Analysis and PDE Seminar

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

University of Texas at San Antonio

Based on a joint paper with Amir Moradifam, UC Riverside,

and a recent work with Alice Sun-Yung Chang, Princeton University

Virtual Seminar, June 1, 2020

Outline

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

- 1 Lebedev-Milin Inequality and Toeplitz Determinants
 - 2 Aubin-Onofri Inequality
- 3 Sphere Covering Inequality
- 4 Logrithemic Determinants
- 5 New Inequality

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Lebedev-Milin inequality is a classical inequality of functions defined on the unit circle S^1 ,

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Lebedev-Milin inequality is a classical inequality of functions defined on the unit circle S^1 ,

Assume on $S^1 \subset \mathbb{R}^2 \sim \mathbb{C}$

$$v(z) = \sum_{k=1}^{\infty} a_k z^k, \quad e^{v(z)} = \sum_{k=0}^{\infty} \beta_k z^k,$$

Then

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Lebedev-Milin inequality is a classical inequality of functions defined on the unit circle S^1 .

Assume on $S^1 \subset \mathbb{R}^2 \sim \mathbb{C}$

$$v(z) = \sum_{k=1}^{\infty} a_k z^k, \quad e^{v(z)} = \sum_{k=0}^{\infty} \beta_k z^k,$$

Then

$$\log(\sum_{k=0}^{\infty} |\beta_k|^2) \le \sum_{k=1}^{\infty} k|a_k|^2$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Lebedev-Milin inequality is a classical inequality of functions defined on the unit circle S^1 ,

Assume on $\mathit{S}^{1} \subset \mathbb{R}^{2} \sim \mathbb{C}$

$$v(z) = \sum_{k=1}^{\infty} a_k z^k, \quad e^{v(z)} = \sum_{k=0}^{\infty} \beta_k z^k,$$

Then

$$\log(\sum_{k=0}^{\infty} |\beta_k|^2) \le \sum_{k=1}^{\infty} k|a_k|^2$$

or

$$\log(\frac{1}{2\pi}\int_{S^1}|e^{\mathsf{v}}|^2d\theta)\leq \frac{1}{2\pi}\int_{S^1}\bar{v}v_z(z)zd\theta$$

and equality holds if and only if $a_k = \gamma^k/k$ for some $\gamma \in \mathbb{C}$ with $|\gamma| < 1$.

Lebedev-Milin inequality is a classical inequality of functions

Analysis and Geometry

Changfeng

New Sharp

Inequalities in

Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Inequality

Logrithemic

Determinant New Inequal defined on the unit circle S^1 , Assume on $S^1 \subset \mathbb{R}^2 \sim \mathbb{C}$

$$v(z) = \sum_{k=0}^{\infty} a_k z^k, \quad e^{v(z)} = \sum_{k=0}^{\infty} \beta_k z^k,$$

$$\log(\sum_{k=1}^{\infty} |\beta_k|^2) \le \sum_{k=1}^{\infty} k |a_k|^2$$

or $\log(\frac{1}{2\pi}\int_{c_1}|e^v|^2d\theta)\leq \frac{1}{2\pi}\int_{c_1}\bar{v}v_z(z)zd\theta$

and equality holds if and only if $a_k = \gamma^k/k$ for some $\gamma \in \mathbb{C}$ with

 $|\gamma| < 1$. This is well known in the community of univalent functions, in particular in connection with Bieberbach conjecture.

Real Valued Function: Another Form

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Denote D the unit disc on \mathbb{R}^2 . For any real function $u \in H^{\frac{1}{2}}(S^1)$, the norm of u is identified as the the $H^1(D)$ norm of the harmonic extension of u, which we denote again by u, on the disc D.

Real Valued Function: Another Form

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Denote D the unit disc on \mathbb{R}^2 . For any real function $u \in H^{\frac{1}{2}}(S^1)$, the norm of u is identified as the the $H^1(D)$ norm of the harmonic extension of u, which we denote again by u, on the disc D.

$$\log(\frac{1}{2\pi}\int_{S^1} e^u d\theta) - \frac{1}{2\pi}\int_{S^1} u d\theta \le \frac{1}{4\pi}||\nabla u||_{L^2(D)}^2 \tag{1}$$

Real Valued Function: Another Form

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Denote D the unit disc on \mathbb{R}^2 . For any real function $u \in H^{\frac{1}{2}}(S^1)$, the norm of u is identified as the the $H^1(D)$ norm of the harmonic extension of u, which we denote again by u, on the disc D.

$$\log(\frac{1}{2\pi}\int_{S^1} e^u d\theta) - \frac{1}{2\pi}\int_{S^1} u d\theta \le \frac{1}{4\pi}||\nabla u||_{L^2(D)}^2 \tag{1}$$

Note:

$$||\nabla u||_{L^2(D)}^2 = \int_{S^1} u \frac{\partial u}{\partial n} d\theta$$

is the $H^{1/2}(S^1)$ norm.

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr

Sphere Covering

Logrithemic Determinant

New Inequality

Given
$$f(\theta)\in L^1(S^1)$$
. Let
$$c_k=\frac{1}{2\pi}\int_{S^1}e^{ik\theta}f(\theta)d\theta, k=0,\pm 1,\pm 2,\cdots,$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Given
$$f(\theta)\in L^1(S^1)$$
. Let
$$c_k=\frac{1}{2\pi}\int_{S^1}e^{ik\theta}f(\theta)d\theta, k=0,\pm 1,\pm 2,\cdots,$$

and $T(p,q)=c_{p-q}, p,q\in\mathbb{Z}$ be the Toeplitz matrix, and $T_n(p,q)=c_{p-q}, 0\leq p,q\leq n$ be the n-th Toeplitz matrix.

New Sharp Inequalities in Analysis and Geometry

> Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Given $f(\theta)\in L^1(S^1)$. Let $c_k=\frac{1}{2\pi}\int_{S^1}e^{ik\theta}f(\theta)d\theta, k=0,\pm 1,\pm 2,\cdots,$

and $T(p,q)=c_{p-q}, p,q\in\mathbb{Z}$ be the Toeplitz matrix, and $T_n(p,q)=c_{p-q}, 0\leq p,q\leq n$ be the n-th Toeplitz matrix. Define

$$D_n(f) = det(T_n).$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Given $f(\theta)\in L^1(S^1)$. Let $c_k=\frac{1}{2\pi}\int_{S^1}e^{ik\theta}f(\theta)d\theta, k=0,\pm 1,\pm 2,\cdots,$

and $T(p,q)=c_{p-q}, p,q\in\mathbb{Z}$ be the Toeplitz matrix, and $T_n(p,q)=c_{p-q}, 0\leq p,q\leq n$ be the n-th Toeplitz matrix. Define

$$D_n(f) = det(T_n).$$

Then $\ln D_n(e^u) - (n+1) \frac{1}{2\pi} \int_{S^1} u d\theta$ is nondecreasing and

$$\lim_{n\to\infty} \{ \ln D_n(e^u) - (n+1) \frac{1}{2\pi} \int_{S^1} u d\theta \} = \frac{1}{4\pi} ||\nabla u||_{L^2(D)}^2.$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Given $f(\theta) \in L^1(S^1)$. Let

$$c_k=rac{1}{2\pi}\int_{S^1}e^{ik heta}f(heta)d heta,\,k=0,\pm 1,\pm 2,\cdots,$$

and $T(p,q)=c_{p-q}, p,q\in\mathbb{Z}$ be the Toeplitz matrix, and $T_n(p,q)=c_{p-q}, 0\leq p,q\leq n$ be the n-th Toeplitz matrix. Define

$$D_n(f) = det(T_n).$$

Then $\ln D_n(e^u) - (n+1) \frac{1}{2\pi} \int_{S^1} u d\theta$ is nondecreasing and

$$\lim_{n\to\infty} \{ \ln D_n(e^u) - (n+1) \frac{1}{2\pi} \int_{S^1} u d\theta \} = \frac{1}{4\pi} ||\nabla u||_{L^2(D)}^2.$$

In particular,

$$\ln D_n(e^u) - (n+1)\frac{1}{2\pi}\int_{C_1}ud\theta \leq \frac{1}{4\pi}||\nabla u||^2_{L^2(D)}, \quad n\geq 0$$

The first two inequalities in the Szego limit theorem

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

We have

$$D_1(e^u) = (\frac{1}{2\pi} \int_{S^1} e^u d\theta)^2 - (\frac{1}{2\pi} \int_{S^1} e^u e^{i\theta} d\theta)^2.$$

The first inequality when n = 0 of Szego limit theorem is the Lebedev-Milin Inequality.

The first two inequalities in the Szego limit theorem

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

We have

$$D_1(e^u) = (\frac{1}{2\pi} \int_{S^1} e^u d\theta)^2 - (\frac{1}{2\pi} \int_{S^1} e^u e^{i\theta} d\theta)^2.$$

The first inequality when n = 0 of Szego limit theorem is the Lebedev-Milin Inequality.

When n = 1, the second inequality in the Szego limit theorem is

$$\log(|\frac{1}{2\pi}\int_{S^{1}}e^{u}d\theta|^{2}-|\frac{1}{2\pi}\int_{S^{1}}e^{u}e^{i\theta}d\theta|^{2})-\frac{1}{\pi}\int_{S^{1}}ud\theta\leq\frac{1}{4\pi}||\nabla u||_{L^{2}(D)}^{2}. \tag{2}$$

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

We have

$$D_1(e^u) = (\frac{1}{2\pi} \int_{S^1} e^u d\theta)^2 - (\frac{1}{2\pi} \int_{S^1} e^u e^{i\theta} d\theta)^2.$$

The first inequality when n = 0 of Szego limit theorem is the Lebedev-Milin Inequality.

When n = 1, the second inequality in the Szego limit theorem is

$$\log(|\frac{1}{2\pi}\int_{S^{1}}e^{u}d\theta|^{2}-|\frac{1}{2\pi}\int_{S^{1}}e^{u}e^{i\theta}d\theta|^{2})-\frac{1}{\pi}\int_{S^{1}}ud\theta\leq\frac{1}{4\pi}||\nabla u||_{L^{2}(D)}^{2}. \tag{2}$$

One notes that in the special case when $\int_{S^1} e^u e^{i\theta} d\theta = 0$, as a direct consequence of above inequality we have

$$\log(\frac{1}{2\pi} \int_{S^1} e^u d\theta) - \frac{1}{2\pi} \int_{S^1} u d\theta \le \frac{1}{8\pi} ||\nabla u||_{L^2(D)}^2. \tag{3}$$

The first two inequalities in the Szego limit theorem

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Inequality

Logrithemic

New Inequalit

We have

$$D_1(e^u) = (\frac{1}{2\pi} \int_{S^1} e^u d\theta)^2 - (\frac{1}{2\pi} \int_{S^1} e^u e^{i\theta} d\theta)^2.$$

The first inequality when n = 0 of Szego limit theorem is the Lebedev-Milin Inequality.

When n = 1, the second inequality in the Szego limit theorem is

$$\log(|\frac{1}{2\pi}\int_{S^1}e^ud\theta|^2-|\frac{1}{2\pi}\int_{S^1}e^ue^{i\theta}d\theta|^2)-\frac{1}{\pi}\int_{S^1}ud\theta\leq \frac{1}{4\pi}||\nabla u||^2_{L^2(D)}.$$
(2)

One notes that in the special case when $\int_{S^1} e^u e^{i\theta} d\theta = 0$, as a direct consequence of above inequality we have

$$\log(\frac{1}{2\pi} \int_{S_1} e^u d\theta) - \frac{1}{2\pi} \int_{S_1} u d\theta \le \frac{1}{8\pi} ||\nabla u||_{L^2(D)}^2.$$
 (3)

Question: Any similar inequalities in higher dimensions?

Outline

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

- 1 Lebedev-Milin Inequality and Toeplitz Determinants
- 2 Aubin-Onofri Inequality
- 3 Sphere Covering Inequality
- 4 Logrithemic Determinants
- 5 New Inequality

Trudinger-Moser Inequality (1967, 1971)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Let S^2 be the unit sphere and for $u \in H^1(S^2)$.

$$J_{\alpha}(u) = \frac{\alpha}{4} \int_{S^2} |\nabla u|^2 d\omega + \int_{S^2} u d\omega - \log \int_{S^2} e^u d\omega \ge C > -\infty,$$

if and only if $\alpha \geq 1$, where the volume form $d\omega$ is normalized so that $\int_{S^2} d\omega = 1$.

Aubin's Result (1979) and Onofri Inequality (1982)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Onofri showed for $\alpha \geq 1$

$$J_{\alpha}(u) \geq 0$$
;

Aubin's Result (1979) and Onofri Inequality (1982)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Onofri showed for $\alpha \geq 1$

$$J_{\alpha}(u) \geq 0$$
;

Aubin observed that for $\alpha \geq \frac{1}{2}$,

$$J_{\alpha}(u) \geq C > -\infty$$

for

$$u \in \mathcal{M} := \{u \in H^1(S^2) : \int_{S^2} e^u x_i = 0, i = 1, 2, 3\},$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Chang and Yang showed that for α close to 1 the best constant again is equal to zero.

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Chang and Yang showed that for α close to 1 the best constant again is equal to zero.

They proposed the following conjecture.

Conjecture A. For $\alpha \geq \frac{1}{2}$,

$$\inf_{u\in\mathcal{M}}J_{\alpha}(u)=0.$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Chang and Yang showed that for α close to 1 the best constant again is equal to zero.

They proposed the following conjecture.

Conjecture A. For $\alpha \geq \frac{1}{2}$,

$$\inf_{u\in\mathcal{M}}J_{\alpha}(u)=0.$$

Indeed, they showed that the minimizer u exists and satisfies the Euler-Lagrange equations

$$\frac{\alpha}{2}\Delta u + \frac{e^u}{\int_{S^2} e^u d\omega} - 1 = \sum_{i=1}^{i=3} \mu_i x_i e^u, \text{ on } S^2.$$
 (4)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Chang and Yang showed that for α close to 1 the best constant again is equal to zero.

They proposed the following conjecture.

Conjecture A. For $\alpha \geq \frac{1}{2}$,

$$\inf_{u\in\mathcal{M}}J_{\alpha}(u)=0.$$

Indeed, they showed that the minimizer \boldsymbol{u} exists and satisfies the Euler-Lagrange equations

$$\frac{\alpha}{2}\Delta u + \frac{e^u}{\int_{S^2} e^u d\omega} - 1 = \sum_{i=1}^{i=3} \mu_i x_i e^u, \text{ on } S^2.$$
 (4)

and

$$\mu_i = 0, \quad i = 1, 2, 3.$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Chang and Yang showed that for α close to 1 the best constant again is equal to zero.

They proposed the following conjecture.

Conjecture A. For $\alpha \geq \frac{1}{2}$,

$$\inf_{u\in\mathcal{M}}J_{\alpha}(u)=0.$$

Indeed, they showed that the minimizer u exists and satisfies

$$\frac{\alpha}{2}\Delta u + \frac{e^u}{\int_{S^2} e^u d\omega} - 1 = 0, \text{ on } S^2.$$
 (5)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

For every function g on (-1,1) satisfying $||g||^2 = \int_{-1}^{1} (1-x^2)|g'(x)|^2 dx < \infty$ and

$$\int_{-1}^1 e^{2g(x)} x dx = 0,$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

For every function g on (-1,1) satisfying $||g||^2 = \int_{-1}^{1} (1-x^2)|g'(x)|^2 dx < \infty$ and

$$\int_{-1}^1 e^{2g(x)} x dx = 0,$$

it holds for $\alpha \geq 1/2$,

$$\frac{\alpha}{2} \int_{-1}^{1} (1-x^2) |g'(x)|^2 dx + \int_{-1}^{1} g(x) dx - \log \frac{1}{2} \int_{-1}^{1} e^{2g(x)} dx \ge 0,$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

For every function g on (-1,1) satisfying $||g||^2 = \int_{-1}^{1} (1-x^2)|g'(x)|^2 dx < \infty$ and

$$\int_{-1}^1 e^{2g(x)} x dx = 0,$$

it holds for $\alpha \geq 1/2$,

$$\frac{\alpha}{2} \int_{-1}^{1} (1-x^2) |g'(x)|^2 dx + \int_{-1}^{1} g(x) dx - \log \frac{1}{2} \int_{-1}^{1} e^{2g(x)} dx \ge 0,$$

Feldman, Froese, Ghoussoub and G. (1998)

$$\alpha > \frac{16}{25} - \epsilon$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Mil Inequality ar Toeplitz Determinant

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

For every function g on (-1,1) satisfying $\|g\|^2 = \int_{-1}^1 (1-x^2)|g'(x)|^2 dx < \infty$ and

$$\int_{-1}^1 e^{2g(x)} x dx = 0,$$

it holds for $\alpha \geq 1/2$,

$$\frac{\alpha}{2} \int_{-1}^{1} (1-x^2) |g'(x)|^2 dx + \int_{-1}^{1} g(x) dx - \log \frac{1}{2} \int_{-1}^{1} e^{2g(x)} dx \ge 0,$$

Feldman, Froese, Ghoussoub and G. (1998)

$$\alpha > \frac{16}{25} - \epsilon$$

G. and Wei, and independently Lin (2000)

Earlier Result for general functions:

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Ghoussoub and Lin (2010):

Conjecture A holds for

$$\alpha \ge \frac{2}{3} - \epsilon$$

Strategies of Proof

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

For axially symmetric functions, to show (3) has only solution $u \equiv C$.

Strategies of Proof

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

For axially symmetric functions, to show (3) has only solution $u \equiv C$.

For general functions, to show solutions to (3) are axially symmetric.

Sterographic Projection

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Figure: Sterographic Projection

Equations on \mathbb{R}^2

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Let Π be the stereographic projection $S^2 \to \mathbb{R}^2$ with respect to the north pole N = (1,0,0):

$$\Pi:=\left(\frac{x_1}{1-x_3},\frac{x_2}{1-x_3}\right).$$

Equations on \mathbb{R}^2

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Let Π be the stereographic projection $S^2 \to \mathbb{R}^2$ with respect to the north pole N = (1,0,0):

$$\Pi:=\left(\frac{x_1}{1-x_3},\frac{x_2}{1-x_3}\right).$$

Suppose u is a solution of (3) and let

$$v = u(\Pi^{-1}(y)) - \frac{2}{\alpha} \ln(1 + |y|^2) + \ln(\frac{8}{\alpha}), \tag{6}$$

Equations on \mathbb{R}^2

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Let Π be the stereographic projection $S^2 \to \mathbb{R}^2$ with respect to the north pole N=(1,0,0):

$$\Pi:=\left(\frac{x_1}{1-x_3},\frac{x_2}{1-x_3}\right).$$

Suppose u is a solution of (3) and let

$$v = u(\Pi^{-1}(y)) - \frac{2}{\alpha} \ln(1 + |y|^2) + \ln(\frac{8}{\alpha}), \tag{6}$$

then v satisfies

$$\Delta v + (1 + |y|^2)^{2(\frac{1}{\alpha} - 1)} e^v = 0 \text{ in } \mathbb{R}^2,$$
 (7)

and

$$\int_{\mathbb{R}^2} (1+|y|^2)^{2(\frac{1}{\alpha}-1)} e^{\nu} dy = \frac{8\pi}{\alpha}.$$
 (8)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Consider in general the equation

$$\Delta v + (1 + |y|^2)^l e^v = 0 \text{ in } \mathbb{R}^2,$$
 (9)

and

$$\int_{R^2} (1+|y|^2)^l e^{\nu} dy = 2\pi (2l+4). \tag{10}$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Consider in general the equation

$$\Delta v + (1 + |y|^2)^I e^v = 0 \text{ in } \mathbb{R}^2,$$
 (9)

and

$$\int_{R^2} (1+|y|^2)^l e^{\nu} dy = 2\pi (2l+4). \tag{10}$$

Are solutions to (9) and (10) radially symmetric?

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

_ebedev-Milin nequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Consider in general the equation

$$\Delta v + (1 + |y|^2)^l e^v = 0 \text{ in } \mathbb{R}^2,$$
 (9)

and

$$\int_{R^2} (1+|y|^2)^l e^{\nu} dy = 2\pi (2l+4). \tag{10}$$

Are solutions to (9) and (10) radially symmetric?

For l = 0: Chen and Li (1991)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Consider in general the equation

$$\Delta v + (1 + |y|^2)^I e^v = 0 \text{ in } \mathbb{R}^2,$$
 (9)

and

$$\int_{R^2} (1+|y|^2)^l e^{\nu} dy = 2\pi (2l+4). \tag{10}$$

Are solutions to (9) and (10) radially symmetric?

For l = 0: Chen and Li (1991)

For -2 < l < 0: Chanillo and Kiessling (1994)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Consider in general the equation

$$\Delta v + (1 + |y|^2)^I e^v = 0 \text{ in } \mathbb{R}^2,$$
 (9)

and

$$\int_{R^2} (1+|y|^2)^l e^{\nu} dy = 2\pi (2l+4). \tag{10}$$

Are solutions to (9) and (10) radially symmetric?

For l = 0: Chen and Li (1991)

For -2 < l < 0: Chanillo and Kiessling (1994)

 $0 < l \le 1$: Ghoussoub and Lin (2010)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Lin (2000): For $2 < l \neq (k-1)(k+2)$, where $k \geq 2$ there is a non radial solution.

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Lin (2000): For $2 < l \neq (k-1)(k+2)$, where $k \geq 2$ there is a non radial solution.

Dolbeault, Esteban, Tarantello (2009): For all $k \ge 2$ and l > k(k+1)-2, there are at least 2(k-2)+2 distinct radial solutions, which implies the existence of non radial solutions. (The bigger the l is, the more complicated the solution structure becomes.)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Lin (2000): For $2 < l \neq (k-1)(k+2)$, where $k \geq 2$ there is a non radial solution.

Dolbeault, Esteban, Tarantello (2009): For all $k \ge 2$ and l > k(k+1)-2, there are at least 2(k-2)+2 distinct radial solutions, which implies the existence of non radial solutions. (The bigger the l is, the more complicated the solution structure becomes.)

Conjecture B. For $0 < l \le 2$, solutions to (9) and (10) must be radially symmetric.

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Lin (2000): For $2 < l \neq (k-1)(k+2)$, where $k \geq 2$ there is a non radial solution.

Dolbeault, Esteban, Tarantello (2009): For all $k \ge 2$ and l > k(k+1)-2, there are at least 2(k-2)+2 distinct radial solutions, which implies the existence of non radial solutions. (The bigger the l is, the more complicated the solution structure becomes.)

Conjecture B. For $0 < l \le 2$, solutions to (9) and (10) must be radially symmetric.

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Both Conejcture A and B hold true.

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Mili Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Both Conejcture A and B hold true.

Conjecture A.

For $\alpha \geq \frac{1}{2}$,

$$\inf_{u\in\mathcal{M}}J_{\alpha}(u)=0.$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Both Conejcture A and B hold true.

Conjecture A.

For $\alpha \geq \frac{1}{2}$,

$$\inf_{u\in\mathcal{M}}J_{\alpha}(u)=0.$$

Conjecture B.

For $0 < l \le 2$, solutions to (9) and (10) must be radially symmetric.

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Both Conejcture A and B hold true.

Conjecture A.

For $\alpha \geq \frac{1}{2}$,

$$\inf_{u\in\mathcal{M}}J_{\alpha}(u)=0.$$

Conjecture B.

For $0 < l \le 2$, solutions to (9) and (10) must be radially symmetric.

Note

$$I = 2(\frac{1}{\alpha} - 1) = 2(\frac{\rho}{8\pi} - 1)$$

.

A general equation on R^2

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Assume $u \in C^2(\mathbb{R}^2)$ satisfies

$$\Delta u + k(|y|)e^{2u} = 0 \quad \text{in} \quad \mathbb{R}^2, \tag{11}$$

and

A general equation on R^2

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Assume $u \in C^2(\mathbb{R}^2)$ satisfies

$$\Delta u + k(|y|)e^{2u} = 0 \text{ in } \mathbb{R}^2, \tag{11}$$

and

$$\frac{1}{2\pi} \int_{\mathbb{R}^2} k(|y|) e^{2u} dy = \beta < \infty, \tag{12}$$

where $K(y) = k(|y|) \in C^2(\mathbb{R}^2)$ is a non constant positive function satisfying

A general equation on R^2

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Assume $u \in C^2(\mathbb{R}^2)$ satisfies

$$\Delta u + k(|y|)e^{2u} = 0 \text{ in } \mathbb{R}^2, \tag{11}$$

and

$$\frac{1}{2\pi} \int_{\mathbb{R}^2} k(|y|) e^{2u} dy = \beta < \infty, \tag{12}$$

where $K(y) = k(|y|) \in C^2(\mathbb{R}^2)$ is a non constant positive function satisfying

(K1)
$$\Delta \ln(k(|y|)) \ge 0, \quad y \in \mathbb{R}^2$$

(K2)
$$\lim_{|y|\to\infty} \frac{|y|k'(|y|)}{k(|y|)} = 2l > 0, \quad y \in \mathbb{R}^2.$$

A general symmetry result

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Mili Inequality an Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

The following general symmetry result is proven.

Proposition

Assume that K(y) = k(|y|) > 0 satisfies (K1) - (K2), and u is a solution to (11)-(12) with $l+1 < \beta \le 4$. Then u must be radially symmetric.

Outline

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

- 1 Lebedev-Milin Inequality and Toeplitz Determinants
 - 2 Aubin-Onofri Inequality
- 3 Sphere Covering Inequality
- 4 Logrithemic Determinants
- 5 New Inequality

The Sphere Covering Inequality: Geometric Description

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Mili Inequality an Toeplitz

Aubin-Onofr

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequalit

Theorem (G. and Moradifam, Inventiones, 2018)

Let Ω be a simply connected subset of R^2 and assume $w_i \in C^2(\overline{\Omega})$, i = 1, 2 satisfy

$$\Delta w_i + e^{w_i} = f_i(y), \tag{13}$$

where $f_2 \geq f_1 \geq 0$ in Ω .

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Theorem (G. and Moradifam, Inventiones, 2018)

Let Ω be a simply connected subset of R^2 and assume $w_i \in C^2(\overline{\Omega})$, i = 1, 2 satisfy

$$\Delta w_i + e^{w_i} = f_i(y), \tag{13}$$

where $f_2 \geq f_1 \geq 0$ in Ω .

Suppose $w_2 > w_1$ in Ω and $w_2 = w_1$ on $\partial \Omega$, then

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Theorem (G. and Moradifam, Inventiones, 2018)

Let Ω be a simply connected subset of R^2 and assume $w_i \in C^2(\overline{\Omega})$, i = 1, 2 satisfy

$$\Delta w_i + e^{w_i} = f_i(y), \tag{13}$$

where $f_2 \geq f_1 \geq 0$ in Ω .

Suppose $w_2 > w_1$ in Ω and $w_2 = w_1$ on $\partial \Omega$, then

$$\int_{\Omega} e^{w_1} + e^{w_2} dy \ge 8\pi. \tag{14}$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Theorem (G. and Moradifam, Inventiones, 2018)

Let Ω be a simply connected subset of R^2 and assume $w_i \in C^2(\overline{\Omega})$, i = 1, 2 satisfy

$$\Delta w_i + e^{w_i} = f_i(y), \tag{13}$$

where $f_2 \geq f_1 \geq 0$ in Ω .

Suppose $w_2>w_1$ in Ω and $w_2=w_1$ on $\partial\Omega$, then

$$\int_{\Omega} e^{w_1} + e^{w_2} dy \ge 8\pi. \tag{14}$$

Furthermore if $f_1 \not\equiv 0$ or $f_2 \not\equiv f_1$ in Ω , then $\int_{\Omega} e^{w_1} + e^{w_2} dy > 8\pi$.

Rigidity of Two Objects: Seesaw Effect

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Isoperimetric Inequalities

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Suppose $\Omega \subset \mathbb{R}^2$, then

$$L^2(\partial\Omega) \geq 4\pi A(\Omega)$$

Equality holds if and only if Ω is a disk.

Levy's Isoperimetric inequalities on spheres (1919)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

On the standard unit sphere with the metric induced from the flat metric of \mathbb{R}^3 ,

$$L^2(\partial\Omega) \ge A(\Omega)(4\pi - A(\Omega))$$

Levy's Isoperimetric inequalities on spheres (1919)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

On the standard unit sphere with the metric induced from the flat metric of \mathbb{R}^3 ,

$$L^2(\partial\Omega) \ge A(\Omega)(4\pi - A(\Omega))$$

If the sphere has radius R, then

$$L^2(\partial\Omega) \ge A(\Omega)(4\pi R^2 - A(\Omega))/R^2$$

i.e.,

$$L^2(\partial\Omega) \ge A(\Omega)(4\pi - A(\Omega)/R^2)$$

Alexandrov-Bol's inequality (1941)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofr

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

In general, we can identify a sphere with \mathbb{R}^2 by a stereographic projection, and equip it with a metric conformal to the flat metric of \mathbb{R}^2 , i.e., $ds^2 = e^{2v}(dx_1^2 + dx_2^2)$.

Alexandrov-Bol's inequality (1941)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Sphere Covering Inequality

In general, we can identify a sphere with \mathbb{R}^2 by a stereographic projection, and equip it with a metric conformal to the flat metric of \mathbb{R}^2 , i.e., $ds^2 = e^{2v}(dx_1^2 + dx_2^2)$. Assume v satisfies

$$\Delta v + K(x)e^{2v} = 0$$
, \mathbb{R}^2

with the gaussian curvature $K \leq 1$.

Alexandrov-Bol's inequality (1941)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

In general, we can identify a sphere with \mathbb{R}^2 by a stereographic projection, and equip it with a metric conformal to the flat metric of \mathbb{R}^2 , i.e., $ds^2=e^{2v}(dx_1^2+dx_2^2)$.

Assume *v* satisfies

$$\Delta v + K(x)e^{2v} = 0$$
, \mathbb{R}^2

with the gaussian curvature $K \leq 1$.

Then

$$(\int_{\partial\Omega}e^{\nu}ds)^2\geq (\int_{\Omega}e^{2\nu})(4\pi-\int_{\Omega}e^{2\nu})$$

Outline

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

- 1 Lebedev-Milin Inequality and Toeplitz Determinants
 - 2 Aubin-Onofri Inequality
- 3 Sphere Covering Inequality
- 4 Logrithemic Determinants
- 5 New Inequality

Logrithemic Determinants and Conformal Geometry

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Given a Riemanian surface (M, σ_0) with Gaussian curvature K_0 and normalized area |M|=1. Consider a conformal metric on $\sigma=e^{2u}$ on M. If $\partial M=\emptyset$, define

$$F(u) = \frac{1}{2} \int_{M} |\nabla_{0}u|^{2} dA_{0} + \int_{M} K_{0}u dA_{0} - \pi \chi(M) \ln(\int_{M} e^{2u} dA_{0}).$$

Logrithemic Determinants and Conformal Geometry

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

Given a Riemanian surface (M, σ_0) with Gaussian curvature K_0 and normalized area |M| = 1. Consider a conformal metric on $\sigma = e^{2u}$ on M.

If $\partial M = \emptyset$, define

$$F(u) = \frac{1}{2} \int_{M} |\nabla_{0}u|^{2} dA_{0} + \int_{M} K_{0}u dA_{0} - \pi \chi(M) \ln(\int_{M} e^{2u} dA_{0}).$$

If ∂M consists of nice boundary with geodesic curvature k_0 , assume that (M, σ_0) and (M, σ) are flat. Define

$$F(u) = \frac{1}{2} \int_{\partial M} u \frac{\partial u}{\partial n} ds_0 + \int_{\partial M} k_0 u ds_0 - 2\pi \chi(M) \ln(\int_{\partial M} e^u ds_0).$$

Extremals

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

B. Osgood, R. Phillips and P. Sarnak. (1988):

$$\log \frac{Det(\Delta_\sigma)}{Det(\Delta_{\sigma_0})} = -\frac{1}{6\pi} F(u) + \frac{1}{4\pi} \int_{\partial M} \frac{\partial u}{\partial n} ds_0$$

Extremals

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

B. Osgood, R. Phillips and P. Sarnak. (1988):

$$\log \frac{Det(\Delta_\sigma)}{Det(\Delta_{\sigma_0})} = -\frac{1}{6\pi} F(u) + \frac{1}{4\pi} \int_{\partial M} \frac{\partial u}{\partial n} ds_0$$

Maximizing $\log Det(\Delta_{\sigma})$ is equivalent to minimizing F.

Extremals

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

B. Osgood, R. Phillips and P. Sarnak. (1988):

$$\log \frac{Det(\Delta_{\sigma})}{Det(\Delta_{\sigma_0})} = -\frac{1}{6\pi}F(u) + \frac{1}{4\pi}\int_{\partial M}\frac{\partial u}{\partial n}ds_0$$

Maximizing $\log Det(\Delta_{\sigma})$ is equivalent to minimizing F.

Uniformization, Isospectral Properties, etc.

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering

Logrithemic Determinants

New Inequalit

If
$$\int_{S^1} e^{ik\theta} e^u d\theta = 0, -n \le k \le n$$
, then
$$\log(\frac{1}{2\pi} \int_{S^1} e^u d\theta) - \frac{1}{2\pi} \int_{S^1} u d\theta \le \frac{1}{4\pi(n+1)} ||\nabla u||_{L^2(D)}^2$$
 (16)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

If
$$\int_{S^1} e^{ik\theta} e^u d\theta = 0, -n \le k \le n$$
, then
$$\log(\frac{1}{2\pi} \int_{S^1} e^u d\theta) - \frac{1}{2\pi} \int_{S^1} u d\theta \le \frac{1}{4\pi(n+1)} ||\nabla u||_{L^2(D)}^2$$
 (16)

Chang-Hang showed:

Let

 $\mathcal{P}_n = \{\text{all polynomials in } \mathbb{R}^3 \text{ with degree at most } n\}.$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

If
$$\int_{S^1} e^{ik\theta} e^u d\theta = 0, -n \le k \le n$$
, then

$$\log(\frac{1}{2\pi}\int_{S^1}e^ud\theta) - \frac{1}{2\pi}\int_{S^1}ud\theta \le \frac{1}{4\pi(n+1)}||\nabla u||_{L^2(D)}^2 \quad (16)$$

Chang-Hang showed:

Let

$$\mathcal{P}_n = \{\text{all polynomials in } \mathbb{R}^3 \text{ with degree at most } n\}.$$

If $\int_{S^2} e^u p(x) d\omega = 0, \forall p \in \mathcal{P}_n$, then for any $\epsilon > 0$ there exist $N(n) \in \mathbb{Z}$ and $C_n(\epsilon) \in R$ such that

$$J_{\frac{1}{M(n)}+\epsilon}(u) \geq C_n(\epsilon) > -\infty, \quad \forall u \in H^1(S^2).$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequalit

If
$$\int_{S^1} e^{ik\theta} e^u d\theta = 0, -n \le k \le n$$
, then

$$\log(\frac{1}{2\pi}\int_{S^1}e^ud\theta) - \frac{1}{2\pi}\int_{S^1}ud\theta \le \frac{1}{4\pi(n+1)}||\nabla u||_{L^2(D)}^2 \quad (16)$$

Chang-Hang showed:

Let

$$\mathcal{P}_n = \{\text{all polynomials in } \mathbb{R}^3 \text{ with degree at most } n\}.$$

If $\int_{S^2} e^u p(x) d\omega = 0, \forall p \in \mathcal{P}_n$, then for any $\epsilon > 0$ there exist $N(n) \in \mathbb{Z}$ and $C_n(\epsilon) \in R$ such that

$$J_{\frac{1}{M(n)}+\epsilon}(u) \geq C_n(\epsilon) > -\infty, \quad \forall u \in H^1(S^2).$$

Here,
$$N(1) = 2$$
, $N(2) = 4$ and $(\lfloor \frac{n}{2} \rfloor + 1)^2 \le N(n) \le n(n+1)$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Mili Inequality and Toeplitz Determinants

Inequality
Sphere
Covering

Logrithemic Determinants

New Inequalit

If $\int_{S^1} e^{ik\theta} e^u d\theta = 0, -n \le k \le n$, then $\log(\frac{1}{2\pi} \int_{S^1} e^u d\theta) - \frac{1}{2\pi} \int_{S^1} u d\theta \le \frac{1}{4\pi(n+1)} ||\nabla u||^2_{L^2(D)}$

Chang-Hang showed:

Let

0 0

 $\mathcal{P}_n = \{ \text{all polynomials in } \mathbb{R}^3 \text{ with degree at most } n \}.$

If $\int_{S^2} e^u p(x) d\omega = 0, \forall p \in \mathcal{P}_n$, then for any $\epsilon > 0$ there exist $N(n) \in \mathbb{Z}$ and $C_n(\epsilon) \in R$ such that

 $J_{\frac{1}{N(n)}+\epsilon}(u) \geq C_n(\epsilon) > -\infty, \quad \forall u \in H^1(S^2).$

Here, N(1)=2, N(2)=4 and $(\lfloor \frac{n}{2} \rfloor +1)^2 \leq N(n) \leq n(n+1)$ $J_{\alpha}(u)=\frac{\alpha}{4}\int |\nabla u|^2 d\omega + \int u d\omega - \log \int_{\mathbb{R}} e^u d\omega, \quad \text{and} \quad \text{$

Outline

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

- 1 Lebedev-Milin Inequality and Toeplitz Determinants
 - 2 Aubin-Onofri Inequality
- 3 Sphere Covering Inequality
- 4 Logrithemic Determinants
- 5 New Inequality

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Let us consider the following functionals in $H^1(S^2)$:

$$I_{\alpha}(u) = \alpha \int_{S^2} |\nabla u|^2 d\omega + 2 \int_{S^2} u d\omega$$

$$-\frac{1}{2}\log[(\int_{S^2}e^{2u}d\omega)^2-\sum_{i=1}^3(\int_{S^2}e^{2u}x_id\omega)^2].$$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Let us consider the following functionals in $H^1(S^2)$:

$$I_{\alpha}(u) = \alpha \int_{S^2} |\nabla u|^2 d\omega + 2 \int_{S^2} u d\omega$$

$$-\frac{1}{2}\log[(\int_{S^2}e^{2u}d\omega)^2-\sum_{i=1}^3(\int_{S^2}e^{2u}x_id\omega)^2].$$

Theorem (Chang and G., 2019)

For any $\alpha > 1/2$, we have

$$I_{\alpha}(u) \ge (\alpha - 2/3) \int_{S^2} |\nabla u|^2 d\omega, \quad \forall u \in H^1(S^2).$$
 (17)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Mili Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Let us consider the following functionals in $H^1(S^2)$:

$$I_{\alpha}(u) = \alpha \int_{S^2} |\nabla u|^2 d\omega + 2 \int_{S^2} u d\omega$$

$$-\frac{1}{2}\log[(\int_{S^2}e^{2u}d\omega)^2-\sum_{i=1}^3(\int_{S^2}e^{2u}x_id\omega)^2].$$

Theorem (Chang and G., 2019)

For any $\alpha > 1/2$, we have

$$I_{\alpha}(u) \geq (\alpha - 2/3) \int_{S^2} |\nabla u|^2 d\omega, \quad \forall u \in H^1(S^2).$$
 (17)

In particular, when $\alpha \geq 2/3$ we have $I_{\alpha}(u) \geq 0$, $\forall u \in H^{1}(S^{2})$

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Mil Inequality at Toeplitz Determinant

Aubin-Onofr

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Let us consider the following functionals in $H^1(S^2)$:

$$I_{\alpha}(u) = \alpha \int_{S^2} |\nabla u|^2 d\omega + 2 \int_{S^2} u d\omega$$

$$-\frac{1}{2}\log[(\int_{S^2}e^{2u}d\omega)^2-\sum_{i=1}^3(\int_{S^2}e^{2u}x_id\omega)^2].$$

Theorem (Chang and G., 2019)

For any $\alpha > 1/2$, we have

$$I_{\alpha}(u) \ge (\alpha - 2/3) \int_{S^2} |\nabla u|^2 d\omega, \quad \forall u \in H^1(S^2).$$
 (17)

In particular, when $\alpha \geq 2/3$ we have $I_{\alpha}(u) \geq 0$, $\forall u \in H^{1}(S^{2})$ But I_{α} is NOT bounded below in $H^{1}(S^{2})$ for $\alpha < 2/3$.

Euler-Lagrange Equation

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Let

$$a_i = \int_{S^2} e^{2u} x_i d\omega, \quad i = 1, 2, 3.$$
 (18)

Define

$$\mathcal{H} = \{ u \in H^1(S^2) : \int_{S^2} e^{2u} d\omega = 1 \}.$$
 (19)

Euler-Lagrange Equation

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Let

$$a_i = \int_{S^2} e^{2u} x_i d\omega, \quad i = 1, 2, 3.$$
 (18)

Define

$$\mathcal{H} = \{ u \in H^1(S^2) : \int_{S^2} e^{2u} d\omega = 1 \}.$$
 (19)

Proposition

The Euler Lagrange equation for the functional I_{α} in ${\cal H}$ is

$$\alpha \Delta u + \frac{1 - \sum_{i=1}^{3} a_i x_i}{1 - \sum_{i=1}^{3} a_i^2} e^{2u} - 1 = 0 \quad \text{on} \quad S^2.$$
 (20)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Proposition

i) When $\alpha \in [\frac{1}{2}, 1)$ and $\alpha \neq \frac{2}{3}$, equation (20) has only constant solutions;

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Proposition

- i) When $\alpha \in [\frac{1}{2}, 1)$ and $\alpha \neq \frac{2}{3}$, equation (20) has only constant solutions;
- ii) When $\alpha = \frac{2}{3}$, for any $\vec{a} = (a_1, a_2, a_3) \in B_1$, there is a unique solution u to equation (20) in \mathcal{H} such that (18) holds.

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Proposition

- i) When $\alpha \in [\frac{1}{2}, 1)$ and $\alpha \neq \frac{2}{3}$, equation (20) has only constant solutions;
- ii) When $\alpha = \frac{2}{3}$, for any $\vec{a} = (a_1, a_2, a_3) \in B_1$, there is a unique solution u to equation (20) in \mathcal{H} such that (18) holds. In particular, u is axially symmetric about \vec{a} if $\vec{a} \neq (0,0,0)$.

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Proposition

- i) When $\alpha \in [\frac{1}{2}, 1)$ and $\alpha \neq \frac{2}{3}$, equation (20) has only constant solutions;
- ii) When $\alpha = \frac{2}{3}$, for any $\vec{a} = (a_1, a_2, a_3) \in B_1$, there is a unique solution u to equation (20) in \mathcal{H} such that (18) holds. In particular, u is axially symmetric about \vec{a} if $\vec{a} \neq (0,0,0)$. After a proper rotation, the solution u is explicitly given by the formula in (26) below.

Kazdan-Warner condition

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

For the Gaussian curvature equation:

$$\Delta u + K(x)e^{2u} = 1 \quad \text{on} \quad S^2, \tag{21}$$

we have

Kazdan-Warner condition

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

For the Gaussian curvature equation:

$$\Delta u + K(x)e^{2u} = 1 \quad \text{on} \quad S^2, \tag{21}$$

we have

$$\int_{S^2} (\nabla K(x) \cdot \nabla x_j) e^{2u} d\omega = 0 \text{ for each } j = 1, 2, 3.$$
 (22)

Stereographic Project

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

For $\alpha = \frac{2}{3}$, we assume that $(a_1, a_2, a_3) = (0, 0, a)$ with $a \in (0, 1)$ and consider

$$\frac{2}{3}\Delta u + \frac{1 - ax_3}{1 - a^2}e^{2u} - 1 = 0 \text{ on } S^2.$$
 (23)

Stereographic Project

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

For $\alpha = \frac{2}{3}$, we assume that $(a_1, a_2, a_3) = (0, 0, a)$ with $a \in (0, 1)$ and consider

$$\frac{2}{3}\Delta u + \frac{1 - ax_3}{1 - a^2}e^{2u} - 1 = 0 \text{ on } S^2.$$
 (23)

Use the stereographic projection to transform the equation to be on \mathbb{R}^2 . Let

$$w(y) := u(\Pi^{-1}(y)) - \frac{3}{2}\ln(1+|y|^2)$$
 for $y \in \mathbb{R}^2$.

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

For $\alpha = \frac{2}{3}$, we assume that $(a_1, a_2, a_3) = (0, 0, a)$ with $a \in (0, 1)$ and consider

$$\frac{2}{3}\Delta u + \frac{1 - ax_3}{1 - a^2}e^{2u} - 1 = 0 \text{ on } S^2.$$
 (23)

Use the stereographic projection to transform the equation to be on \mathbb{R}^2 . Let

$$w(y) := u(\Pi^{-1}(y)) - \frac{3}{2}\ln(1+|y|^2)$$
 for $y \in \mathbb{R}^2$.

Then w satisfies

$$\Delta w + \frac{6}{1+a}(b^2 + |y|^2)e^{2w} = 0 \text{ in } \mathbb{R}^2$$
 (24)

where $b^2 = \frac{1+a}{1-a} > 1, b > 0$ and

Stereographic Project

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

For $\alpha = \frac{2}{3}$, we assume that $(a_1, a_2, a_3) = (0, 0, a)$ with $a \in (0, 1)$ and consider

$$\frac{2}{3}\Delta u + \frac{1 - ax_3}{1 - a^2}e^{2u} - 1 = 0 \text{ on } S^2.$$
 (23)

Use the stereographic projection to transform the equation to be on \mathbb{R}^2 . Let

$$w(y) := u(\Pi^{-1}(y)) - \frac{3}{2}\ln(1+|y|^2)$$
 for $y \in \mathbb{R}^2$.

Then w satisfies

$$\Delta w + \frac{6}{1+a}(b^2+|y|^2)e^{2w} = 0 \text{ in } \mathbb{R}^2$$
 (24)

where $b^2 = \frac{1+a}{1-a} > 1, b > 0$ and

$$\int_{\mathbb{R}^2} (b^2 + |y|^2) e^{2w} dy = (1+a)\pi. \tag{25}$$

Exact Solution

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Now it is easy to verify directly that

$$w(y) = -\frac{3}{2}\ln(b^2 + |y|^2) + 2\ln b + \frac{1}{2}\ln\frac{2}{1+b^2}$$

is a solution to (24) and (25), and hence u(x) defined by

$$u(x) = u(\Pi^{-1}(y)) := \frac{3}{2} \ln \frac{1 + |y|^2}{b^2 + |y|^2} + 2 \ln b + \frac{1}{2} \ln \frac{2}{1 + b^2}$$
 (26)

is a solution to (23).

Symmetry and Uniqueness of Solutions

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Use symmetry result of G.-Moradifam (2018) and uniqueness result of C.S. Lin (2000) on axially symmetric solutions, we know that the solution above is a unique solution. Define

$$u_{\alpha,b}(x) = u_{\alpha,b}(\Pi^{-1}(y)) := \frac{1}{\alpha} \ln \frac{1 + |y|^2}{b^2 + |y|^2} + 2 \ln b + \frac{1}{2} \ln \frac{2}{1 + b^2}$$
(27)

Symmetry and Uniqueness of Solutions

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milii Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Use symmetry result of G.-Moradifam (2018) and uniqueness result of C.S. Lin (2000) on axially symmetric solutions, we know that the solution above is a unique solution. Define

$$u_{\alpha,b}(x) = u_{\alpha,b}(\Pi^{-1}(y)) := \frac{1}{\alpha} \ln \frac{1 + |y|^2}{b^2 + |y|^2} + 2 \ln b + \frac{1}{2} \ln \frac{2}{1 + b^2}$$
(27)

Direct computations show that

$$\lim_{b\to\infty} I_{\alpha}(u_{\alpha,b}) = -\infty, \quad \text{if } \alpha < \frac{2}{3}$$

$$\lim_{b\to\infty} I_{\alpha}(u_{\alpha,b}) = \infty, \quad \text{if } \alpha > \frac{2}{3}$$

$$I_{\frac{2}{3}}(u_{\frac{2}{3},b}) = 0, \quad \forall b > 0$$

Indeed,

$$u_{\alpha,\vec{a}}(x) = -rac{1}{lpha}\ln\left(1-\vec{a}\cdot x
ight) + \ln(1-|\vec{a}|^2), \quad x\in S^2.$$

Challenge: Compactness?

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering

Logrithemic Determinant

New Inequality

It is NOT clear if the minimum is attained and a minimizer exists!

Challenge: Compactness?

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

It is NOT clear if the minimum is attained and a minimizer exists!

The compactness of the minimizing sequence is NOT known.

A Constrained Minimization Problem and Compactness

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr

Sphere Covering

Logrithemic Determinant

New Inequality

For any $\vec{a}=(a_1,a_2,a_3)\in B_1:=\{|a|<1\}\subset \mathbb{R}^2$, let us define

$$\mathcal{M}_{\vec{a}} := \{ u \in H^1(S^2) : \int_{S^2} e^{2u} x_i = a_i, \quad i = 1, 2, 3 \} \cap \mathcal{H}.$$
 (28)

A Constrained Minimization Problem and Compactness

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

For any $\vec{a}=(a_1,a_2,a_3)\in B_1:=\{|a|<1\}\subset \mathbb{R}^2, \text{ let us define }$

$$\mathcal{M}_{\vec{a}} := \{ u \in H^1(S^2) : \int_{S^2} e^{2u} x_i = a_i, \quad i = 1, 2, 3 \} \cap \mathcal{H}.$$
 (28)

We consider a constrained minimizing problem on $\mathcal{M}_{\vec{a}}$:

$$\min_{u \in \mathcal{M}_{\vec{a}}} I_{\alpha}(u).$$

A Constrained Minimization Problem and Compactness

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

For any $\vec{a}=(a_1,a_2,a_3)\in B_1:=\{|a|<1\}\subset \mathbb{R}^2, \text{ let us define }$

$$\mathcal{M}_{\vec{a}} := \{ u \in H^1(S^2) : \int_{S^2} e^{2u} x_i = a_i, \quad i = 1, 2, 3 \} \cap \mathcal{H}.$$
 (28)

We consider a constrained minimizing problem on $\mathcal{M}_{\vec{a}}$:

$$\min_{u \in \mathcal{M}_{\vec{a}}} I_{\alpha}(u).$$

and recall the following compactness result:

Proposition

For any $\alpha > \frac{1}{2}$, $\vec{a} = (a_1, a_2, a_3) \in B_1$, there exists $C_{\alpha, \vec{a}} \in \mathbb{R}$ such that

$$I_{\alpha}(u) \ge C_{\alpha,\vec{a}}, \quad \forall u \in \mathcal{M}_{\vec{a}}$$
 (29)

E-L Equation of the constrained problem

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

It is standard to show that there exists a minimizer $u_{\alpha,\vec{a}} \in \mathcal{M}_{\vec{a}}$ of (28) satisfying

$$\alpha \Delta u + e^{2u} (\rho - \sum_{i=1}^{3} \beta_i x_i) = 1, \quad x \in S^2$$
 (30)

for some $\rho \in \mathbb{R}$ and $\vec{\beta} = (\beta_1, \beta_2, \beta_3) \in \mathbb{R}^3$ with

E-L Equation of the constrained problem

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

It is standard to show that there exists a minimizer $u_{\alpha,\vec{a}} \in \mathcal{M}_{\vec{a}}$ of (28) satisfying

$$\alpha \Delta u + e^{2u} \left(\rho - \sum_{i=1}^{3} \beta_i x_i\right) = 1, \quad x \in S^2$$
 (30)

for some $\rho \in \mathbb{R}$ and $\vec{\beta} = (\beta_1, \beta_2, \beta_3) \in \mathbb{R}^3$ with

$$\rho = 1 + \sum_{i=1}^{3} \beta_i a_i.$$

E-L Equation of the constrained problem

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

It is standard to show that there exists a minimizer $u_{\alpha,\vec{a}} \in \mathcal{M}_{\vec{a}}$ of (28) satisfying

$$\alpha \Delta u + e^{2u} (\rho - \sum_{i=1}^{3} \beta_i x_i) = 1, \quad x \in S^2$$
 (30)

for some $\rho \in \mathbb{R}$ and $\vec{\beta} = (\beta_1, \beta_2, \beta_3) \in \mathbb{R}^3$ with

$$\rho = 1 + \sum_{i=1}^{3} \beta_i a_i.$$

Luckily for $\alpha=\frac{2}{3}$, $\beta_j=\frac{a_j}{1-|\vec{a}|^2}$, j=1,2,3. Then (30) is equivalent to (20) and

E-L Equation of the constrained problem

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

It is standard to show that there exists a minimizer $u_{\alpha,\vec{a}}\in\mathcal{M}_{\vec{a}}$ of (28) satisfying

$$\alpha \Delta u + e^{2u} (\rho - \sum_{i=1}^{3} \beta_i x_i) = 1, \quad x \in S^2$$
 (30)

for some $\rho \in \mathbb{R}$ and $\vec{\beta} = (\beta_1, \beta_2, \beta_3) \in \mathbb{R}^3$ with

$$\rho = 1 + \sum_{i=1}^{3} \beta_i a_i.$$

Luckily for $\alpha=\frac{2}{3}$, $\beta_j=\frac{a_j}{1-|\vec{a}|^2}$, j=1,2,3. Then (30) is equivalent to (20) and

$$\min_{u \in \mathcal{M}_{\vec{3}}} I_{\frac{2}{3}}(u) = I_{\frac{2}{3}}(u_{\frac{2}{3},|\vec{a}|}) = 0.$$

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Rotate the coordinates properly so that $\beta_1 = \beta_2 = 0$. Without loss of generality, we assume that $\beta_3 > 0$.

We can obtain

$$\frac{a_3}{1 - a_3^2} \le \beta_3 \le \frac{2(\frac{1}{\alpha} - 1)a_3}{1 - a_3^2}, \quad \text{if } \alpha \in (\frac{1}{2}, \frac{2}{3}]$$
 (31)

and

$$\frac{a_3}{1-a_3^2} \ge \beta_3 \ge \frac{2(\frac{1}{\alpha}-1)a_3}{1-a_3^2}, \quad \text{if } \alpha \in [\frac{2}{3},1]. \tag{32}$$

Difference: Equation on \mathbb{R}^{2}

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering

Logrithemic Determinant

New Inequality

Let *b* be a positive constant with $b^2 = \frac{\rho + \beta_3}{\rho - \beta_3} > 1$. Set

$$w_{\alpha,\vec{s}}(y) := u_{\alpha,\vec{s}}(\Pi^{-1}(y)) - \frac{1}{\alpha}\ln(1+|y|^2) + \frac{1}{2}\ln(\frac{4(\rho-\beta_3)}{\alpha}).$$

Difference: Equation on \mathbb{R}^2

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

Let b be a positive constant with $b^2 = \frac{\rho + \beta_3}{\rho - \beta_3} > 1$. Set

$$w_{\alpha,\vec{s}}(y) := u_{\alpha,\vec{s}}(\Pi^{-1}(y)) - \frac{1}{\alpha}\ln(1+|y|^2) + \frac{1}{2}\ln(\frac{4(\rho-\beta_3)}{\alpha}).$$

Then $w_{\alpha,\vec{a}}$ satisfies

$$\Delta w + k(|y|)e^{2w} = 0 \quad \text{in} \quad \mathbb{R}^2$$
 (33)

and

$$\frac{1}{2\pi} \int_{\mathbb{R}^2} k(|y|) e^{2w} dy = \frac{2}{\alpha}$$
 (34)

where

$$k(|y|) := (b^2 + |y|^2)(1 + |y|^2)^{\frac{2}{\alpha} - 3}.$$

Difference: Equation on \mathbb{R}^2

New Sharp Inequalities in Analysis and Geometry

> Changfeng Gui

Lebedev-Mi Inequality a Toeplitz Determinan

Aubin-Onofri Inequality

Covering Inequality

Determinant

New Inequality

Let b be a positive constant with $b^2 = \frac{\rho + \beta_3}{\rho - \beta_3} > 1$. Set

$$w_{\alpha,\vec{s}}(y) := u_{\alpha,\vec{s}}(\mathsf{\Pi}^{-1}(y)) - \frac{1}{\alpha} \ln(1+|y|^2) + \frac{1}{2} \ln(\frac{4(\rho-\beta_3)}{\alpha}).$$

Then $w_{\alpha,\vec{a}}$ satisfies

$$\Delta w + k(|y|)e^{2w} = 0 \quad \text{in} \quad \mathbb{R}^2$$
 (33)

and

$$\frac{1}{2\pi} \int_{\mathbb{R}^2} k(|y|) e^{2w} dy = \frac{2}{\alpha}$$
 (34)

where

$$k(|y|) := (b^2 + |y|^2)(1 + |y|^2)^{\frac{2}{\alpha} - 3}.$$

When $\frac{1}{2} < \alpha < \frac{2}{3}$, t k(|y|) satisfies (K1) - (K2) with $I = \frac{2}{\alpha} - 2$. By G.-Moradifam (2018), $w_{\alpha,\vec{a}}(y)$ must be radially symmetric and hence $u_{\alpha,\vec{a}}(y)$ must be axially symmetric and $a_1 = a_2 = 0$.

Estimate of the minimum $m(\alpha, a)$ of J_{α} on \mathcal{M}_{a} .

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Theorem

There hold pointwise in $a \in [0,1)$

$$m(\alpha, \mathbf{a}) \ge \begin{cases} (\frac{2}{\alpha} - 3) \ln(1 - \mathbf{a}^2), & \alpha \in (1/2, 2/3), \\ \alpha(\frac{1}{\alpha} - \frac{3}{2}) \ln(1 - \mathbf{a}^2), & \alpha \in (2/3, 1). \end{cases}$$
(35)

and

Estimate of the minimum $m(\alpha, a)$ of J_{α} on \mathcal{M}_{a} .

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Theorem

There hold pointwise in $a \in [0,1)$

$$m(\alpha, \mathbf{a}) \ge \begin{cases} (\frac{2}{\alpha} - 3) \ln(1 - \mathbf{a}^2), & \alpha \in (1/2, 2/3), \\ \alpha(\frac{1}{\alpha} - \frac{3}{2}) \ln(1 - \mathbf{a}^2), & \alpha \in (2/3, 1). \end{cases}$$
(35)

and

$$\leq \begin{cases} \left(\frac{2}{\alpha} - 3\right) \ln(1 - a^{2}), & \alpha \in (2/3, 1), \\ \frac{3\alpha}{2a} \left(\frac{1}{\alpha} - \frac{3}{2}\right) \left(\ln(1 - a^{2}) - 2(\ln(1 + a) - a)\right), & \forall \alpha \in (1/2, 1). \end{cases}$$
(36)

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere

Logrithemic

New Inequality

1). Should $u_{\alpha,\vec{a}}(y)$ always be axially symmetric for all $\alpha \in (\frac{1}{2},1)$ and $\vec{a} \in B_1$?

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

- 1). Should $u_{\alpha,\vec{a}}(y)$ always be axially symmetric for all $\alpha \in (\frac{1}{2}, 1)$ and $\vec{a} \in B_1$?
- 2). Is the minimizer $u_{\alpha,\vec{a}}(y)$ unique determined? In particular, is β uniquely determined? We know that if β is uniquely determined by α and \vec{a} , then the axially symmetric solution $u_{\alpha,\vec{a}}(y)$ is unique.

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

- 1). Should $u_{\alpha,\vec{s}}(y)$ always be axially symmetric for all $\alpha \in (\frac{1}{2},1)$ and $\vec{s} \in B_1$?
- 2). Is the minimizer $u_{\alpha,\vec{a}}(y)$ unique determined? In particular, is β uniquely determined? We know that if β is uniquely determined by α and \vec{a} , then the axially symmetric solution $u_{\alpha,\vec{a}}(y)$ is unique.
- 3) Fixed $\alpha \in (\frac{1}{2},1)$, $\vec{a} \in B_1$, for any given $\vec{\beta} = \beta_3 \vec{a}/|\vec{a}|$, $0 < \beta_3 < \frac{1}{1-|\vec{a}|}$, $\rho = 1 + \beta_3 |\vec{a}|$, there is a unique axially symmetric solution u to (30) with the corresponding w solving (33) and (34).

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri Inequality

Sphere Covering Inequality

Logrithemic Determinants

New Inequality

1). Should $u_{\alpha,\vec{a}}(y)$ always be axially symmetric for all $\alpha \in (\frac{1}{2},1)$ and $\vec{a} \in B_1$?

2). Is the minimizer $u_{\alpha,\vec{a}}(y)$ unique determined? In particular, is β uniquely determined? We know that if β is uniquely determined by α and \vec{a} , then the axially symmetric solution $u_{\alpha,\vec{a}}(y)$ is unique.

3) Fixed $\alpha \in (\frac{1}{2},1), \vec{a} \in B_1$, for any given $\vec{\beta} = \beta_3 \vec{a}/|\vec{a}|, 0 < \beta_3 < \frac{1}{1-|\vec{a}|}, \rho = 1+\beta_3 |\vec{a}|$, there is a unique axially symmetric solution u to (30) with the corresponding w solving (33) and (34).

4) Can we compute or estimate more accurately

$$m(\alpha, \vec{a}) := I_{\alpha}(u_{\alpha, \vec{a}})$$
?

Open Questions

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milir Inequality and Toeplitz Determinants

Aubin-Onofr

Sphere Covering

Logrithemic Determinant

New Inequality

Is there an analogue of Szego Limit Theorem for S^2 ?

Open Questions

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr Inequality

Sphere Covering

Logrithemic Determinant

New Inequality

Is there an analogue of Szego Limit Theorem for S^2 ?

What is the right form of Szego Limit Theorem for S^2 ?

Open Questions

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofri

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

Is there an analogue of Szego Limit Theorem for S^2 ?

What is the right form of Szego Limit Theorem for S^2 ?

Higher Dimensions?

References

New Sharp Inequalities in Analysis and Geometry

Changfeng Gui

Lebedev-Mill Inequality an Toeplitz Determinant

Aubin-Onofr Inequality

Sphere Covering Inequality

Logrithemic Determinant

New Inequality

- 1. Sun-Yung A. Chang and Fengbo Hang. Improved moser-trudinger-onofri inequality under constraints. arXiv preprint, 2019.
- 2. Sun-Yung A. Chang and Changfeng Gui, New Sharp Inequalities on the Sphere Related to Multiple Classical Inequalities, preprint
- 3. Sun-Yung Alice Chang and Paul C. Yang, *Prescribing Gaussian curvature on S* 2 , Acta Math., 159(3-4):215 \div 259, 1987.
- 4. Ulf Grenander and Gabor Szeg . Toeplitz forms and their applications. California Mono- graphs in Mathematical Sciences. University of California Press, Berkeley-Los Angeles, 1958.
- 5. Changfeng Gui, Amir Moradifam, *The Sphere Covering Inequality and Its Applications*, Inventiones Mathematicae, (2018). https://doi.org/10.1007/s00222-018-0820-2.

New Sharp Inequalities in Analysis and Geometry

> Changfeng Gui

Lebedev-Milin Inequality and Toeplitz Determinants

Aubin-Onofr

Sphere Covering

Logrithemic

New Inequality

Thank You!